Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
resopab2
Next ⟩
resmpt
Metamath Proof Explorer
Ascii
Unicode
Theorem
resopab2
Description:
Restriction of a class abstraction of ordered pairs.
(Contributed by
NM
, 24-Aug-2007)
Ref
Expression
Assertion
resopab2
⊢
A
⊆
B
→
x
y
|
x
∈
B
∧
φ
↾
A
=
x
y
|
x
∈
A
∧
φ
Proof
Step
Hyp
Ref
Expression
1
resopab
⊢
x
y
|
x
∈
B
∧
φ
↾
A
=
x
y
|
x
∈
A
∧
x
∈
B
∧
φ
2
ssel
⊢
A
⊆
B
→
x
∈
A
→
x
∈
B
3
2
pm4.71d
⊢
A
⊆
B
→
x
∈
A
↔
x
∈
A
∧
x
∈
B
4
3
anbi1d
⊢
A
⊆
B
→
x
∈
A
∧
φ
↔
x
∈
A
∧
x
∈
B
∧
φ
5
anass
⊢
x
∈
A
∧
x
∈
B
∧
φ
↔
x
∈
A
∧
x
∈
B
∧
φ
6
4
5
bitr2di
⊢
A
⊆
B
→
x
∈
A
∧
x
∈
B
∧
φ
↔
x
∈
A
∧
φ
7
6
opabbidv
⊢
A
⊆
B
→
x
y
|
x
∈
A
∧
x
∈
B
∧
φ
=
x
y
|
x
∈
A
∧
φ
8
1
7
eqtrid
⊢
A
⊆
B
→
x
y
|
x
∈
B
∧
φ
↾
A
=
x
y
|
x
∈
A
∧
φ