Description: A restricted polynomial algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ressmpl.s | |
|
ressmpl.h | |
||
ressmpl.u | |
||
ressmpl.b | |
||
ressmpl.1 | |
||
ressmpl.2 | |
||
ressmpl.p | |
||
Assertion | ressmpladd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressmpl.s | |
|
2 | ressmpl.h | |
|
3 | ressmpl.u | |
|
4 | ressmpl.b | |
|
5 | ressmpl.1 | |
|
6 | ressmpl.2 | |
|
7 | ressmpl.p | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | 3 8 4 9 | mplbasss | |
11 | 10 | sseli | |
12 | 10 | sseli | |
13 | 11 12 | anim12i | |
14 | eqid | |
|
15 | eqid | |
|
16 | 14 2 8 9 15 6 | resspsradd | |
17 | 13 16 | sylan2 | |
18 | 4 | fvexi | |
19 | 3 8 4 | mplval2 | |
20 | eqid | |
|
21 | 19 20 | ressplusg | |
22 | 18 21 | ax-mp | |
23 | 22 | oveqi | |
24 | fvex | |
|
25 | eqid | |
|
26 | 1 14 25 | mplval2 | |
27 | eqid | |
|
28 | 26 27 | ressplusg | |
29 | 24 28 | ax-mp | |
30 | fvex | |
|
31 | 15 27 | ressplusg | |
32 | 30 31 | ax-mp | |
33 | eqid | |
|
34 | 7 33 | ressplusg | |
35 | 18 34 | ax-mp | |
36 | 29 32 35 | 3eqtr3i | |
37 | 36 | oveqi | |
38 | 17 23 37 | 3eqtr3g | |