Metamath Proof Explorer


Theorem ressmpladd

Description: A restricted polynomial algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015)

Ref Expression
Hypotheses ressmpl.s S=ImPolyR
ressmpl.h H=R𝑠T
ressmpl.u U=ImPolyH
ressmpl.b B=BaseU
ressmpl.1 φIV
ressmpl.2 φTSubRingR
ressmpl.p P=S𝑠B
Assertion ressmpladd φXBYBX+UY=X+PY

Proof

Step Hyp Ref Expression
1 ressmpl.s S=ImPolyR
2 ressmpl.h H=R𝑠T
3 ressmpl.u U=ImPolyH
4 ressmpl.b B=BaseU
5 ressmpl.1 φIV
6 ressmpl.2 φTSubRingR
7 ressmpl.p P=S𝑠B
8 eqid ImPwSerH=ImPwSerH
9 eqid BaseImPwSerH=BaseImPwSerH
10 3 8 4 9 mplbasss BBaseImPwSerH
11 10 sseli XBXBaseImPwSerH
12 10 sseli YBYBaseImPwSerH
13 11 12 anim12i XBYBXBaseImPwSerHYBaseImPwSerH
14 eqid ImPwSerR=ImPwSerR
15 eqid ImPwSerR𝑠BaseImPwSerH=ImPwSerR𝑠BaseImPwSerH
16 14 2 8 9 15 6 resspsradd φXBaseImPwSerHYBaseImPwSerHX+ImPwSerHY=X+ImPwSerR𝑠BaseImPwSerHY
17 13 16 sylan2 φXBYBX+ImPwSerHY=X+ImPwSerR𝑠BaseImPwSerHY
18 4 fvexi BV
19 3 8 4 mplval2 U=ImPwSerH𝑠B
20 eqid +ImPwSerH=+ImPwSerH
21 19 20 ressplusg BV+ImPwSerH=+U
22 18 21 ax-mp +ImPwSerH=+U
23 22 oveqi X+ImPwSerHY=X+UY
24 fvex BaseSV
25 eqid BaseS=BaseS
26 1 14 25 mplval2 S=ImPwSerR𝑠BaseS
27 eqid +ImPwSerR=+ImPwSerR
28 26 27 ressplusg BaseSV+ImPwSerR=+S
29 24 28 ax-mp +ImPwSerR=+S
30 fvex BaseImPwSerHV
31 15 27 ressplusg BaseImPwSerHV+ImPwSerR=+ImPwSerR𝑠BaseImPwSerH
32 30 31 ax-mp +ImPwSerR=+ImPwSerR𝑠BaseImPwSerH
33 eqid +S=+S
34 7 33 ressplusg BV+S=+P
35 18 34 ax-mp +S=+P
36 29 32 35 3eqtr3i +ImPwSerR𝑠BaseImPwSerH=+P
37 36 oveqi X+ImPwSerR𝑠BaseImPwSerHY=X+PY
38 17 23 37 3eqtr3g φXBYBX+UY=X+PY