Metamath Proof Explorer


Theorem resssxp

Description: If the R -image of a class A is a subclass of B , then the restriction of R to A is a subset of the Cartesian product of A and B . (Contributed by RP, 24-Dec-2019)

Ref Expression
Assertion resssxp RABRAA×B

Proof

Step Hyp Ref Expression
1 df-ima RA=ranRA
2 1 sseq1i RABranRAB
3 dmres domRA=AdomR
4 inss1 AdomRA
5 3 4 eqsstri domRAA
6 5 biantrur ranRABdomRAAranRAB
7 relres RelRA
8 relssdmrn RelRARAdomRA×ranRA
9 7 8 ax-mp RAdomRA×ranRA
10 xpss12 domRAAranRABdomRA×ranRAA×B
11 9 10 sstrid domRAAranRABRAA×B
12 dmss RAA×BdomRAdomA×B
13 dmxpss domA×BA
14 12 13 sstrdi RAA×BdomRAA
15 rnss RAA×BranRAranA×B
16 rnxpss ranA×BB
17 15 16 sstrdi RAA×BranRAB
18 14 17 jca RAA×BdomRAAranRAB
19 11 18 impbii domRAAranRABRAA×B
20 2 6 19 3bitri RABRAA×B