Description: If the R -image of a class A is a subclass of B , then the restriction of R to A is a subset of the Cartesian product of A and B . (Contributed by RP, 24-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | resssxp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima | |
|
2 | 1 | sseq1i | |
3 | dmres | |
|
4 | inss1 | |
|
5 | 3 4 | eqsstri | |
6 | 5 | biantrur | |
7 | relres | |
|
8 | relssdmrn | |
|
9 | 7 8 | ax-mp | |
10 | xpss12 | |
|
11 | 9 10 | sstrid | |
12 | dmss | |
|
13 | dmxpss | |
|
14 | 12 13 | sstrdi | |
15 | rnss | |
|
16 | rnxpss | |
|
17 | 15 16 | sstrdi | |
18 | 14 17 | jca | |
19 | 11 18 | impbii | |
20 | 2 6 19 | 3bitri | |