Metamath Proof Explorer


Theorem ressust

Description: The uniform structure of a restricted space. (Contributed by Thierry Arnoux, 22-Jan-2018)

Ref Expression
Hypotheses ressust.x X=BaseW
ressust.t T=UnifStW𝑠A
Assertion ressust WUnifSpAXTUnifOnA

Proof

Step Hyp Ref Expression
1 ressust.x X=BaseW
2 ressust.t T=UnifStW𝑠A
3 1 fvexi XV
4 3 ssex AXAV
5 4 adantl WUnifSpAXAV
6 ressuss AVUnifStW𝑠A=UnifStW𝑡A×A
7 5 6 syl WUnifSpAXUnifStW𝑠A=UnifStW𝑡A×A
8 2 7 eqtrid WUnifSpAXT=UnifStW𝑡A×A
9 eqid UnifStW=UnifStW
10 eqid TopOpenW=TopOpenW
11 1 9 10 isusp WUnifSpUnifStWUnifOnXTopOpenW=unifTopUnifStW
12 11 simplbi WUnifSpUnifStWUnifOnX
13 trust UnifStWUnifOnXAXUnifStW𝑡A×AUnifOnA
14 12 13 sylan WUnifSpAXUnifStW𝑡A×AUnifOnA
15 8 14 eqeltrd WUnifSpAXTUnifOnA