Metamath Proof Explorer


Theorem ressval2

Description: Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014)

Ref Expression
Hypotheses ressbas.r R=W𝑠A
ressbas.b B=BaseW
Assertion ressval2 ¬BAWXAYR=WsSetBasendxAB

Proof

Step Hyp Ref Expression
1 ressbas.r R=W𝑠A
2 ressbas.b B=BaseW
3 1 2 ressval WXAYR=ifBAWWsSetBasendxAB
4 iffalse ¬BAifBAWWsSetBasendxAB=WsSetBasendxAB
5 3 4 sylan9eqr ¬BAWXAYR=WsSetBasendxAB
6 5 3impb ¬BAWXAYR=WsSetBasendxAB