Description: Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009) (Proof shortened by Mario Carneiro, 1-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | restabs | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |
|
2 | simp3 | |
|
3 | ssexg | |
|
4 | 3 | 3adant1 | |
5 | restco | |
|
6 | 1 2 4 5 | syl3anc | |
7 | simp2 | |
|
8 | sseqin2 | |
|
9 | 7 8 | sylib | |
10 | 9 | oveq2d | |
11 | 6 10 | eqtrd | |