Metamath Proof Explorer


Theorem restabs

Description: Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009) (Proof shortened by Mario Carneiro, 1-May-2015)

Ref Expression
Assertion restabs JVSTTWJ𝑡T𝑡S=J𝑡S

Proof

Step Hyp Ref Expression
1 simp1 JVSTTWJV
2 simp3 JVSTTWTW
3 ssexg STTWSV
4 3 3adant1 JVSTTWSV
5 restco JVTWSVJ𝑡T𝑡S=J𝑡TS
6 1 2 4 5 syl3anc JVSTTWJ𝑡T𝑡S=J𝑡TS
7 simp2 JVSTTWST
8 sseqin2 STTS=S
9 7 8 sylib JVSTTWTS=S
10 9 oveq2d JVSTTWJ𝑡TS=J𝑡S
11 6 10 eqtrd JVSTTWJ𝑡T𝑡S=J𝑡S