Metamath Proof Explorer


Theorem restidsing

Description: Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009) (Proof shortened by JJ, 25-Aug-2021) (Proof shortened by Peter Mazsa, 6-Oct-2022)

Ref Expression
Assertion restidsing IA=A×A

Proof

Step Hyp Ref Expression
1 relres RelIA
2 relxp RelA×A
3 velsn xAx=A
4 velsn yAy=A
5 3 4 anbi12i xAyAx=Ay=A
6 vex yV
7 6 ideq xIyx=y
8 3 7 anbi12i xAxIyx=Ax=y
9 eqeq1 x=Ax=yA=y
10 eqcom A=yy=A
11 9 10 bitrdi x=Ax=yy=A
12 11 pm5.32i x=Ax=yx=Ay=A
13 8 12 bitri xAxIyx=Ay=A
14 df-br xIyxyI
15 14 anbi2i xAxIyxAxyI
16 5 13 15 3bitr2ri xAxyIxAyA
17 6 opelresi xyIAxAxyI
18 opelxp xyA×AxAyA
19 16 17 18 3bitr4i xyIAxyA×A
20 1 2 19 eqrelriiv IA=A×A