Metamath Proof Explorer


Theorem restrreld

Description: The restriction of a transitive relation is a transitive relation. (Contributed by RP, 24-Dec-2019)

Ref Expression
Hypotheses restrreld.r φRRR
restrreld.s φS=RA
Assertion restrreld φSSS

Proof

Step Hyp Ref Expression
1 restrreld.r φRRR
2 restrreld.s φS=RA
3 df-res RA=RA×V
4 2 3 eqtrdi φS=RA×V
5 1 4 xpintrreld φSSS