Description: The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | restsspw | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i | |
|
2 | restfn | |
|
3 | fndm | |
|
4 | 2 3 | ax-mp | |
5 | 4 | ndmov | |
6 | 1 5 | nsyl2 | |
7 | elrest | |
|
8 | 6 7 | syl | |
9 | 8 | ibi | |
10 | inss2 | |
|
11 | sseq1 | |
|
12 | 10 11 | mpbiri | |
13 | 12 | rexlimivw | |
14 | 9 13 | syl | |
15 | velpw | |
|
16 | 14 15 | sylibr | |
17 | 16 | ssriv | |