Metamath Proof Explorer


Theorem restsspw

Description: The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion restsspw J𝑡A𝒫A

Proof

Step Hyp Ref Expression
1 n0i xJ𝑡A¬J𝑡A=
2 restfn 𝑡FnV×V
3 fndm 𝑡FnV×Vdom𝑡=V×V
4 2 3 ax-mp dom𝑡=V×V
5 4 ndmov ¬JVAVJ𝑡A=
6 1 5 nsyl2 xJ𝑡AJVAV
7 elrest JVAVxJ𝑡AyJx=yA
8 6 7 syl xJ𝑡AxJ𝑡AyJx=yA
9 8 ibi xJ𝑡AyJx=yA
10 inss2 yAA
11 sseq1 x=yAxAyAA
12 10 11 mpbiri x=yAxA
13 12 rexlimivw yJx=yAxA
14 9 13 syl xJ𝑡AxA
15 velpw x𝒫AxA
16 14 15 sylibr xJ𝑡Ax𝒫A
17 16 ssriv J𝑡A𝒫A