Metamath Proof Explorer


Theorem restval

Description: The subspace topology induced by the topology J on the set A . (Contributed by FL, 20-Sep-2010) (Revised by Mario Carneiro, 1-May-2015)

Ref Expression
Assertion restval JVAWJ𝑡A=ranxJxA

Proof

Step Hyp Ref Expression
1 elex JVJV
2 elex AWAV
3 mptexg JVxJxAV
4 rnexg xJxAVranxJxAV
5 3 4 syl JVranxJxAV
6 5 adantr JVAVranxJxAV
7 simpl j=Jy=Aj=J
8 simpr j=Jy=Ay=A
9 8 ineq2d j=Jy=Axy=xA
10 7 9 mpteq12dv j=Jy=Axjxy=xJxA
11 10 rneqd j=Jy=Aranxjxy=ranxJxA
12 df-rest 𝑡=jV,yVranxjxy
13 11 12 ovmpoga JVAVranxJxAVJ𝑡A=ranxJxA
14 6 13 mpd3an3 JVAVJ𝑡A=ranxJxA
15 1 2 14 syl2an JVAWJ𝑡A=ranxJxA