Metamath Proof Explorer


Theorem resubeu

Description: Existential uniqueness of real differences. (Contributed by Steven Nguyen, 7-Jan-2023)

Ref Expression
Assertion resubeu A B ∃! x A + x = B

Proof

Step Hyp Ref Expression
1 simpl A B A
2 rernegcl A 0 - A
3 2 adantr A B 0 - A
4 elre0re A 0
5 4 4 readdcld A 0 + 0
6 rernegcl 0 + 0 0 - 0 + 0
7 5 6 syl A 0 - 0 + 0
8 7 adantr A B 0 - 0 + 0
9 simpr A B B
10 8 9 readdcld A B 0 - 0 + 0 + B
11 3 10 readdcld A B 0 - A + 0 - 0 + 0 + B
12 resubeulem2 A B A + 0 - A + 0 - 0 + 0 + B = B
13 oveq2 x = 0 - A + 0 - 0 + 0 + B A + x = A + 0 - A + 0 - 0 + 0 + B
14 13 eqeq1d x = 0 - A + 0 - 0 + 0 + B A + x = B A + 0 - A + 0 - 0 + 0 + B = B
15 14 rspcev 0 - A + 0 - 0 + 0 + B A + 0 - A + 0 - 0 + 0 + B = B x A + x = B
16 11 12 15 syl2anc A B x A + x = B
17 1 16 renegeulem A B ∃! x A + x = B