Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Real subtraction
resubeu
Next ⟩
rersubcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
resubeu
Description:
Existential uniqueness of real differences.
(Contributed by
Steven Nguyen
, 7-Jan-2023)
Ref
Expression
Assertion
resubeu
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
∃!
x
∈
ℝ
A
+
x
=
B
Proof
Step
Hyp
Ref
Expression
1
simpl
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
∈
ℝ
2
rernegcl
⊢
A
∈
ℝ
→
0
-
ℝ
A
∈
ℝ
3
2
adantr
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
0
-
ℝ
A
∈
ℝ
4
elre0re
⊢
A
∈
ℝ
→
0
∈
ℝ
5
4
4
readdcld
⊢
A
∈
ℝ
→
0
+
0
∈
ℝ
6
rernegcl
⊢
0
+
0
∈
ℝ
→
0
-
ℝ
0
+
0
∈
ℝ
7
5
6
syl
⊢
A
∈
ℝ
→
0
-
ℝ
0
+
0
∈
ℝ
8
7
adantr
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
0
-
ℝ
0
+
0
∈
ℝ
9
simpr
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
B
∈
ℝ
10
8
9
readdcld
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
0
-
ℝ
0
+
0
+
B
∈
ℝ
11
3
10
readdcld
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
0
-
ℝ
A
+
0
-
ℝ
0
+
0
+
B
∈
ℝ
12
resubeulem2
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
+
0
-
ℝ
A
+
0
-
ℝ
0
+
0
+
B
=
B
13
oveq2
⊢
x
=
0
-
ℝ
A
+
0
-
ℝ
0
+
0
+
B
→
A
+
x
=
A
+
0
-
ℝ
A
+
0
-
ℝ
0
+
0
+
B
14
13
eqeq1d
⊢
x
=
0
-
ℝ
A
+
0
-
ℝ
0
+
0
+
B
→
A
+
x
=
B
↔
A
+
0
-
ℝ
A
+
0
-
ℝ
0
+
0
+
B
=
B
15
14
rspcev
⊢
0
-
ℝ
A
+
0
-
ℝ
0
+
0
+
B
∈
ℝ
∧
A
+
0
-
ℝ
A
+
0
-
ℝ
0
+
0
+
B
=
B
→
∃
x
∈
ℝ
A
+
x
=
B
16
11
12
15
syl2anc
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
∃
x
∈
ℝ
A
+
x
=
B
17
1
16
renegeulem
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
∃!
x
∈
ℝ
A
+
x
=
B