Metamath Proof Explorer


Theorem resum2sqgt0

Description: The sum of the square of a nonzero real number and the square of another real number is greater than zero. (Contributed by AV, 7-Feb-2023)

Ref Expression
Hypothesis resum2sqcl.q Q=A2+B2
Assertion resum2sqgt0 AA0B0<Q

Proof

Step Hyp Ref Expression
1 resum2sqcl.q Q=A2+B2
2 simpl AA0A
3 2 resqcld AA0A2
4 3 adantr AA0BA2
5 simpr AA0BB
6 5 resqcld AA0BB2
7 sqgt0 AA00<A2
8 7 adantr AA0B0<A2
9 sqge0 B0B2
10 9 adantl AA0B0B2
11 4 6 8 10 addgtge0d AA0B0<A2+B2
12 11 1 breqtrrdi AA0B0<Q