Metamath Proof Explorer


Theorem reu7

Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006)

Ref Expression
Hypothesis rmo4.1 x=yφψ
Assertion reu7 ∃!xAφxAφxAyAψx=y

Proof

Step Hyp Ref Expression
1 rmo4.1 x=yφψ
2 reu3 ∃!xAφxAφzAxAφx=z
3 equequ1 x=yx=zy=z
4 equcom y=zz=y
5 3 4 bitrdi x=yx=zz=y
6 1 5 imbi12d x=yφx=zψz=y
7 6 cbvralvw xAφx=zyAψz=y
8 7 rexbii zAxAφx=zzAyAψz=y
9 equequ1 z=xz=yx=y
10 9 imbi2d z=xψz=yψx=y
11 10 ralbidv z=xyAψz=yyAψx=y
12 11 cbvrexvw zAyAψz=yxAyAψx=y
13 8 12 bitri zAxAφx=zxAyAψx=y
14 13 anbi2i xAφzAxAφx=zxAφxAyAψx=y
15 2 14 bitri ∃!xAφxAφxAyAψx=y