Metamath Proof Explorer


Theorem reuan

Description: Introduction of a conjunct into restricted unique existential quantifier, analogous to euan . (Contributed by Alexander van der Vekens, 2-Jul-2017)

Ref Expression
Hypothesis rmoanim.1 xφ
Assertion reuan ∃!xAφψφ∃!xAψ

Proof

Step Hyp Ref Expression
1 rmoanim.1 xφ
2 simpl φψφ
3 2 a1i xAφψφ
4 1 3 rexlimi xAφψφ
5 4 adantr xAφψ*xAφψφ
6 simpr φψψ
7 6 reximi xAφψxAψ
8 7 adantr xAφψ*xAφψxAψ
9 nfre1 xxAφψ
10 4 adantr xAφψxAφ
11 10 a1d xAφψxAψφ
12 11 ancrd xAφψxAψφψ
13 6 12 impbid2 xAφψxAφψψ
14 9 13 rmobida xAφψ*xAφψ*xAψ
15 14 biimpa xAφψ*xAφψ*xAψ
16 5 8 15 jca32 xAφψ*xAφψφxAψ*xAψ
17 reu5 ∃!xAφψxAφψ*xAφψ
18 reu5 ∃!xAψxAψ*xAψ
19 18 anbi2i φ∃!xAψφxAψ*xAψ
20 16 17 19 3imtr4i ∃!xAφψφ∃!xAψ
21 ibar φψφψ
22 21 adantr φxAψφψ
23 1 22 reubida φ∃!xAψ∃!xAφψ
24 23 biimpa φ∃!xAψ∃!xAφψ
25 20 24 impbii ∃!xAφψφ∃!xAψ