Description: Introduction of a conjunct into restricted unique existential quantifier, analogous to euan . (Contributed by Alexander van der Vekens, 2-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rmoanim.1 | |
|
Assertion | reuan | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmoanim.1 | |
|
2 | simpl | |
|
3 | 2 | a1i | |
4 | 1 3 | rexlimi | |
5 | 4 | adantr | |
6 | simpr | |
|
7 | 6 | reximi | |
8 | 7 | adantr | |
9 | nfre1 | |
|
10 | 4 | adantr | |
11 | 10 | a1d | |
12 | 11 | ancrd | |
13 | 6 12 | impbid2 | |
14 | 9 13 | rmobida | |
15 | 14 | biimpa | |
16 | 5 8 15 | jca32 | |
17 | reu5 | |
|
18 | reu5 | |
|
19 | 18 | anbi2i | |
20 | 16 17 19 | 3imtr4i | |
21 | ibar | |
|
22 | 21 | adantr | |
23 | 1 22 | reubida | |
24 | 23 | biimpa | |
25 | 20 24 | impbii | |