Metamath Proof Explorer


Theorem reuf1od

Description: There is exactly one element in each of two isomorphic sets. (Contributed by AV, 19-Mar-2023)

Ref Expression
Hypotheses reuf1od.f φ F : C 1-1 onto B
reuf1od.x φ x = F y ψ χ
Assertion reuf1od φ ∃! x B ψ ∃! y C χ

Proof

Step Hyp Ref Expression
1 reuf1od.f φ F : C 1-1 onto B
2 reuf1od.x φ x = F y ψ χ
3 f1of F : C 1-1 onto B F : C B
4 1 3 syl φ F : C B
5 4 ffvelrnda φ y C F y B
6 f1ofveu F : C 1-1 onto B x B ∃! y C F y = x
7 eqcom x = F y F y = x
8 7 reubii ∃! y C x = F y ∃! y C F y = x
9 6 8 sylibr F : C 1-1 onto B x B ∃! y C x = F y
10 1 9 sylan φ x B ∃! y C x = F y
11 5 10 2 reuxfr1d φ ∃! x B ψ ∃! y C χ