Metamath Proof Explorer


Theorem rexfiuz

Description: Combine finitely many different upper integer properties into one. (Contributed by Mario Carneiro, 6-Jun-2014)

Ref Expression
Assertion rexfiuz AFinjkjnAφnAjkjφ

Proof

Step Hyp Ref Expression
1 raleq x=nxφnφ
2 1 rexralbidv x=jkjnxφjkjnφ
3 raleq x=nxjkjφnjkjφ
4 2 3 bibi12d x=jkjnxφnxjkjφjkjnφnjkjφ
5 raleq x=ynxφnyφ
6 5 rexralbidv x=yjkjnxφjkjnyφ
7 raleq x=ynxjkjφnyjkjφ
8 6 7 bibi12d x=yjkjnxφnxjkjφjkjnyφnyjkjφ
9 raleq x=yznxφnyzφ
10 9 rexralbidv x=yzjkjnxφjkjnyzφ
11 raleq x=yznxjkjφnyzjkjφ
12 10 11 bibi12d x=yzjkjnxφnxjkjφjkjnyzφnyzjkjφ
13 raleq x=AnxφnAφ
14 13 rexralbidv x=AjkjnxφjkjnAφ
15 raleq x=AnxjkjφnAjkjφ
16 14 15 bibi12d x=AjkjnxφnxjkjφjkjnAφnAjkjφ
17 0z 0
18 17 ne0ii
19 ral0 nφ
20 19 rgen2w jkjnφ
21 r19.2z jkjnφjkjnφ
22 18 20 21 mp2an jkjnφ
23 ral0 njkjφ
24 22 23 2th jkjnφnjkjφ
25 anbi1 jkjnyφnyjkjφjkjnyφnzjkjφnyjkjφnzjkjφ
26 rexanuz jkjnyφnzφjkjnyφjkjnzφ
27 ralunb nyzφnyφnzφ
28 27 ralbii kjnyzφkjnyφnzφ
29 28 rexbii jkjnyzφjkjnyφnzφ
30 ralsnsg zVnzjkjφ[˙z/n]˙jkjφ
31 sbcrex [˙z/n]˙jkjφj[˙z/n]˙kjφ
32 ralcom kjnzφnzkjφ
33 ralsnsg zVnzkjφ[˙z/n]˙kjφ
34 32 33 bitrid zVkjnzφ[˙z/n]˙kjφ
35 34 rexbidv zVjkjnzφj[˙z/n]˙kjφ
36 31 35 bitr4id zV[˙z/n]˙jkjφjkjnzφ
37 30 36 bitrd zVnzjkjφjkjnzφ
38 37 elv nzjkjφjkjnzφ
39 38 anbi2i jkjnyφnzjkjφjkjnyφjkjnzφ
40 26 29 39 3bitr4i jkjnyzφjkjnyφnzjkjφ
41 ralunb nyzjkjφnyjkjφnzjkjφ
42 25 40 41 3bitr4g jkjnyφnyjkjφjkjnyzφnyzjkjφ
43 42 a1i yFinjkjnyφnyjkjφjkjnyzφnyzjkjφ
44 4 8 12 16 24 43 findcard2 AFinjkjnAφnAjkjφ