Metamath Proof Explorer


Theorem rexima

Description: Existential quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015)

Ref Expression
Hypothesis rexima.x x=Fyφψ
Assertion rexima FFnABAxFBφyBψ

Proof

Step Hyp Ref Expression
1 rexima.x x=Fyφψ
2 fvexd FFnABAyBFyV
3 fvelimab FFnABAxFByBFy=x
4 eqcom Fy=xx=Fy
5 4 rexbii yBFy=xyBx=Fy
6 3 5 bitrdi FFnABAxFByBx=Fy
7 1 adantl FFnABAx=Fyφψ
8 2 6 7 rexxfr2d FFnABAxFBφyBψ