Metamath Proof Explorer


Theorem rexiunxp

Description: Write a double restricted quantification as one universal quantifier. In this version of rexxp , B ( y ) is not assumed to be constant. (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypothesis ralxp.1 x=yzφψ
Assertion rexiunxp xyAy×BφyAzBψ

Proof

Step Hyp Ref Expression
1 ralxp.1 x=yzφψ
2 1 notbid x=yz¬φ¬ψ
3 2 raliunxp xyAy×B¬φyAzB¬ψ
4 ralnex zB¬ψ¬zBψ
5 4 ralbii yAzB¬ψyA¬zBψ
6 3 5 bitri xyAy×B¬φyA¬zBψ
7 6 notbii ¬xyAy×B¬φ¬yA¬zBψ
8 dfrex2 xyAy×Bφ¬xyAy×B¬φ
9 dfrex2 yAzBψ¬yA¬zBψ
10 7 8 9 3bitr4i xyAy×BφyAzBψ