Metamath Proof Explorer


Theorem rexrn

Description: Restricted existential quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013) (Revised by Mario Carneiro, 20-Aug-2014)

Ref Expression
Hypothesis rexrn.1 x=Fyφψ
Assertion rexrn FFnAxranFφyAψ

Proof

Step Hyp Ref Expression
1 rexrn.1 x=Fyφψ
2 fvexd FFnAyAFyV
3 fvelrnb FFnAxranFyAFy=x
4 eqcom Fy=xx=Fy
5 4 rexbii yAFy=xyAx=Fy
6 3 5 bitrdi FFnAxranFyAx=Fy
7 1 adantl FFnAx=Fyφψ
8 2 6 7 rexxfr2d FFnAxranFφyAψ