Metamath Proof Explorer


Theorem rhmco

Description: The composition of ring homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Assertion rhmco FTRingHomUGSRingHomTFGSRingHomU

Proof

Step Hyp Ref Expression
1 rhmrcl2 FTRingHomUURing
2 rhmrcl1 GSRingHomTSRing
3 1 2 anim12ci FTRingHomUGSRingHomTSRingURing
4 rhmghm FTRingHomUFTGrpHomU
5 rhmghm GSRingHomTGSGrpHomT
6 ghmco FTGrpHomUGSGrpHomTFGSGrpHomU
7 4 5 6 syl2an FTRingHomUGSRingHomTFGSGrpHomU
8 eqid mulGrpT=mulGrpT
9 eqid mulGrpU=mulGrpU
10 8 9 rhmmhm FTRingHomUFmulGrpTMndHommulGrpU
11 eqid mulGrpS=mulGrpS
12 11 8 rhmmhm GSRingHomTGmulGrpSMndHommulGrpT
13 mhmco FmulGrpTMndHommulGrpUGmulGrpSMndHommulGrpTFGmulGrpSMndHommulGrpU
14 10 12 13 syl2an FTRingHomUGSRingHomTFGmulGrpSMndHommulGrpU
15 7 14 jca FTRingHomUGSRingHomTFGSGrpHomUFGmulGrpSMndHommulGrpU
16 11 9 isrhm FGSRingHomUSRingURingFGSGrpHomUFGmulGrpSMndHommulGrpU
17 3 15 16 sylanbrc FTRingHomUGSRingHomTFGSRingHomU