Metamath Proof Explorer


Theorem rhmco

Description: The composition of ring homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Assertion rhmco F T RingHom U G S RingHom T F G S RingHom U

Proof

Step Hyp Ref Expression
1 rhmrcl2 F T RingHom U U Ring
2 rhmrcl1 G S RingHom T S Ring
3 1 2 anim12ci F T RingHom U G S RingHom T S Ring U Ring
4 rhmghm F T RingHom U F T GrpHom U
5 rhmghm G S RingHom T G S GrpHom T
6 ghmco F T GrpHom U G S GrpHom T F G S GrpHom U
7 4 5 6 syl2an F T RingHom U G S RingHom T F G S GrpHom U
8 eqid mulGrp T = mulGrp T
9 eqid mulGrp U = mulGrp U
10 8 9 rhmmhm F T RingHom U F mulGrp T MndHom mulGrp U
11 eqid mulGrp S = mulGrp S
12 11 8 rhmmhm G S RingHom T G mulGrp S MndHom mulGrp T
13 mhmco F mulGrp T MndHom mulGrp U G mulGrp S MndHom mulGrp T F G mulGrp S MndHom mulGrp U
14 10 12 13 syl2an F T RingHom U G S RingHom T F G mulGrp S MndHom mulGrp U
15 7 14 jca F T RingHom U G S RingHom T F G S GrpHom U F G mulGrp S MndHom mulGrp U
16 11 9 isrhm F G S RingHom U S Ring U Ring F G S GrpHom U F G mulGrp S MndHom mulGrp U
17 3 15 16 sylanbrc F T RingHom U G S RingHom T F G S RingHom U