Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Rings (extension)
Subcategories of the category of rings
rhmsubcALTVlem2
Next ⟩
rhmsubcALTVlem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
rhmsubcALTVlem2
Description:
Lemma 2 for
rhmsubcALTV
.
(Contributed by
AV
, 2-Mar-2020)
(New usage is discouraged.)
Ref
Expression
Hypotheses
rngcrescrhmALTV.u
⊢
φ
→
U
∈
V
rngcrescrhmALTV.c
⊢
C
=
RngCatALTV
⁡
U
rngcrescrhmALTV.r
⊢
φ
→
R
=
Ring
∩
U
rngcrescrhmALTV.h
⊢
H
=
RingHom
↾
R
×
R
Assertion
rhmsubcALTVlem2
⊢
φ
∧
X
∈
R
∧
Y
∈
R
→
X
H
Y
=
X
RingHom
Y
Proof
Step
Hyp
Ref
Expression
1
rngcrescrhmALTV.u
⊢
φ
→
U
∈
V
2
rngcrescrhmALTV.c
⊢
C
=
RngCatALTV
⁡
U
3
rngcrescrhmALTV.r
⊢
φ
→
R
=
Ring
∩
U
4
rngcrescrhmALTV.h
⊢
H
=
RingHom
↾
R
×
R
5
opelxpi
⊢
X
∈
R
∧
Y
∈
R
→
X
Y
∈
R
×
R
6
5
3adant1
⊢
φ
∧
X
∈
R
∧
Y
∈
R
→
X
Y
∈
R
×
R
7
6
fvresd
⊢
φ
∧
X
∈
R
∧
Y
∈
R
→
RingHom
↾
R
×
R
⁡
X
Y
=
RingHom
⁡
X
Y
8
df-ov
⊢
X
H
Y
=
H
⁡
X
Y
9
4
fveq1i
⊢
H
⁡
X
Y
=
RingHom
↾
R
×
R
⁡
X
Y
10
8
9
eqtri
⊢
X
H
Y
=
RingHom
↾
R
×
R
⁡
X
Y
11
df-ov
⊢
X
RingHom
Y
=
RingHom
⁡
X
Y
12
7
10
11
3eqtr4g
⊢
φ
∧
X
∈
R
∧
Y
∈
R
→
X
H
Y
=
X
RingHom
Y