Metamath Proof Explorer


Theorem rhmsubcALTVlem2

Description: Lemma 2 for rhmsubcALTV . (Contributed by AV, 2-Mar-2020) (New usage is discouraged.)

Ref Expression
Hypotheses rngcrescrhmALTV.u φ U V
rngcrescrhmALTV.c C = RngCatALTV U
rngcrescrhmALTV.r φ R = Ring U
rngcrescrhmALTV.h H = RingHom R × R
Assertion rhmsubcALTVlem2 φ X R Y R X H Y = X RingHom Y

Proof

Step Hyp Ref Expression
1 rngcrescrhmALTV.u φ U V
2 rngcrescrhmALTV.c C = RngCatALTV U
3 rngcrescrhmALTV.r φ R = Ring U
4 rngcrescrhmALTV.h H = RingHom R × R
5 opelxpi X R Y R X Y R × R
6 5 3adant1 φ X R Y R X Y R × R
7 6 fvresd φ X R Y R RingHom R × R X Y = RingHom X Y
8 df-ov X H Y = H X Y
9 4 fveq1i H X Y = RingHom R × R X Y
10 8 9 eqtri X H Y = RingHom R × R X Y
11 df-ov X RingHom Y = RingHom X Y
12 7 10 11 3eqtr4g φ X R Y R X H Y = X RingHom Y