Metamath Proof Explorer


Theorem riesz4

Description: A continuous linear functional can be expressed as an inner product. Uniqueness part of Theorem 3.9 of Beran p. 104. See riesz2 for the bounded linear functional version. (Contributed by NM, 16-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion riesz4 TLinFnContFn∃!wvTv=vihw

Proof

Step Hyp Ref Expression
1 fveq1 T=ifTLinFnContFnT×0Tv=ifTLinFnContFnT×0v
2 1 eqeq1d T=ifTLinFnContFnT×0Tv=vihwifTLinFnContFnT×0v=vihw
3 2 ralbidv T=ifTLinFnContFnT×0vTv=vihwvifTLinFnContFnT×0v=vihw
4 3 reubidv T=ifTLinFnContFnT×0∃!wvTv=vihw∃!wvifTLinFnContFnT×0v=vihw
5 inss1 LinFnContFnLinFn
6 0lnfn ×0LinFn
7 0cnfn ×0ContFn
8 elin ×0LinFnContFn×0LinFn×0ContFn
9 6 7 8 mpbir2an ×0LinFnContFn
10 9 elimel ifTLinFnContFnT×0LinFnContFn
11 5 10 sselii ifTLinFnContFnT×0LinFn
12 inss2 LinFnContFnContFn
13 12 10 sselii ifTLinFnContFnT×0ContFn
14 11 13 riesz4i ∃!wvifTLinFnContFnT×0v=vihw
15 4 14 dedth TLinFnContFn∃!wvTv=vihw