Description: A continuous linear functional can be expressed as an inner product. Uniqueness part of Theorem 3.9 of Beran p. 104. (Contributed by NM, 13-Feb-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nlelch.1 | |
|
nlelch.2 | |
||
Assertion | riesz4i | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlelch.1 | |
|
2 | nlelch.2 | |
|
3 | 1 2 | riesz3i | |
4 | r19.26 | |
|
5 | oveq12 | |
|
6 | 5 | adantl | |
7 | 1 | lnfnfi | |
8 | 7 | ffvelcdmi | |
9 | 8 | subidd | |
10 | 9 | adantr | |
11 | 6 10 | eqtr3d | |
12 | 11 | ralimiaa | |
13 | 4 12 | sylbir | |
14 | hvsubcl | |
|
15 | oveq1 | |
|
16 | oveq1 | |
|
17 | 15 16 | oveq12d | |
18 | 17 | eqeq1d | |
19 | 18 | rspcv | |
20 | 14 19 | syl | |
21 | normcl | |
|
22 | 21 | recnd | |
23 | sqeq0 | |
|
24 | 22 23 | syl | |
25 | norm-i | |
|
26 | 24 25 | bitrd | |
27 | 14 26 | syl | |
28 | normsq | |
|
29 | 14 28 | syl | |
30 | simpl | |
|
31 | simpr | |
|
32 | his2sub2 | |
|
33 | 14 30 31 32 | syl3anc | |
34 | 29 33 | eqtrd | |
35 | 34 | eqeq1d | |
36 | hvsubeq0 | |
|
37 | 27 35 36 | 3bitr3d | |
38 | 20 37 | sylibd | |
39 | 13 38 | syl5 | |
40 | 39 | rgen2 | |
41 | oveq2 | |
|
42 | 41 | eqeq2d | |
43 | 42 | ralbidv | |
44 | 43 | reu4 | |
45 | 3 40 44 | mpbir2an | |