Metamath Proof Explorer


Theorem riesz4i

Description: A continuous linear functional can be expressed as an inner product. Uniqueness part of Theorem 3.9 of Beran p. 104. (Contributed by NM, 13-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nlelch.1 TLinFn
nlelch.2 TContFn
Assertion riesz4i ∃!wvTv=vihw

Proof

Step Hyp Ref Expression
1 nlelch.1 TLinFn
2 nlelch.2 TContFn
3 1 2 riesz3i wvTv=vihw
4 r19.26 vTv=vihwTv=vihuvTv=vihwvTv=vihu
5 oveq12 Tv=vihwTv=vihuTvTv=vihwvihu
6 5 adantl vTv=vihwTv=vihuTvTv=vihwvihu
7 1 lnfnfi T:
8 7 ffvelcdmi vTv
9 8 subidd vTvTv=0
10 9 adantr vTv=vihwTv=vihuTvTv=0
11 6 10 eqtr3d vTv=vihwTv=vihuvihwvihu=0
12 11 ralimiaa vTv=vihwTv=vihuvvihwvihu=0
13 4 12 sylbir vTv=vihwvTv=vihuvvihwvihu=0
14 hvsubcl wuw-u
15 oveq1 v=w-uvihw=w-uihw
16 oveq1 v=w-uvihu=w-uihu
17 15 16 oveq12d v=w-uvihwvihu=w-uihww-uihu
18 17 eqeq1d v=w-uvihwvihu=0w-uihww-uihu=0
19 18 rspcv w-uvvihwvihu=0w-uihww-uihu=0
20 14 19 syl wuvvihwvihu=0w-uihww-uihu=0
21 normcl w-unormw-u
22 21 recnd w-unormw-u
23 sqeq0 normw-unormw-u2=0normw-u=0
24 22 23 syl w-unormw-u2=0normw-u=0
25 norm-i w-unormw-u=0w-u=0
26 24 25 bitrd w-unormw-u2=0w-u=0
27 14 26 syl wunormw-u2=0w-u=0
28 normsq w-unormw-u2=w-uihw-u
29 14 28 syl wunormw-u2=w-uihw-u
30 simpl wuw
31 simpr wuu
32 his2sub2 w-uwuw-uihw-u=w-uihww-uihu
33 14 30 31 32 syl3anc wuw-uihw-u=w-uihww-uihu
34 29 33 eqtrd wunormw-u2=w-uihww-uihu
35 34 eqeq1d wunormw-u2=0w-uihww-uihu=0
36 hvsubeq0 wuw-u=0w=u
37 27 35 36 3bitr3d wuw-uihww-uihu=0w=u
38 20 37 sylibd wuvvihwvihu=0w=u
39 13 38 syl5 wuvTv=vihwvTv=vihuw=u
40 39 rgen2 wuvTv=vihwvTv=vihuw=u
41 oveq2 w=uvihw=vihu
42 41 eqeq2d w=uTv=vihwTv=vihu
43 42 ralbidv w=uvTv=vihwvTv=vihu
44 43 reu4 ∃!wvTv=vihwwvTv=vihwwuvTv=vihwvTv=vihuw=u
45 3 40 44 mpbir2an ∃!wvTv=vihw