Metamath Proof Explorer


Theorem riesz3i

Description: A continuous linear functional can be expressed as an inner product. Existence part of Theorem 3.9 of Beran p. 104. (Contributed by NM, 13-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nlelch.1 T LinFn
nlelch.2 T ContFn
Assertion riesz3i w v T v = v ih w

Proof

Step Hyp Ref Expression
1 nlelch.1 T LinFn
2 nlelch.2 T ContFn
3 ax-hv0cl 0
4 1 lnfnfi T :
5 fveq2 null T = 0 null T = 0
6 1 2 nlelchi null T C
7 6 ococi null T = null T
8 choc0 0 =
9 5 7 8 3eqtr3g null T = 0 null T =
10 9 eleq2d null T = 0 v null T v
11 10 biimpar null T = 0 v v null T
12 elnlfn2 T : v null T T v = 0
13 4 11 12 sylancr null T = 0 v T v = 0
14 hi02 v v ih 0 = 0
15 14 adantl null T = 0 v v ih 0 = 0
16 13 15 eqtr4d null T = 0 v T v = v ih 0
17 16 ralrimiva null T = 0 v T v = v ih 0
18 oveq2 w = 0 v ih w = v ih 0
19 18 eqeq2d w = 0 T v = v ih w T v = v ih 0
20 19 ralbidv w = 0 v T v = v ih w v T v = v ih 0
21 20 rspcev 0 v T v = v ih 0 w v T v = v ih w
22 3 17 21 sylancr null T = 0 w v T v = v ih w
23 6 choccli null T C
24 23 chne0i null T 0 u null T u 0
25 23 cheli u null T u
26 4 ffvelrni u T u
27 26 adantr u u 0 T u
28 hicl u u u ih u
29 28 anidms u u ih u
30 29 adantr u u 0 u ih u
31 his6 u u ih u = 0 u = 0
32 31 necon3bid u u ih u 0 u 0
33 32 biimpar u u 0 u ih u 0
34 27 30 33 divcld u u 0 T u u ih u
35 34 cjcld u u 0 T u u ih u
36 simpl u u 0 u
37 hvmulcl T u u ih u u T u u ih u u
38 35 36 37 syl2anc u u 0 T u u ih u u
39 38 adantll u null T u u 0 T u u ih u u
40 hvmulcl T u v T u v
41 26 40 sylan u v T u v
42 4 ffvelrni v T v
43 hvmulcl T v u T v u
44 42 43 sylan v u T v u
45 44 ancoms u v T v u
46 simpl u v u
47 his2sub T u v T v u u T u v - T v u ih u = T u v ih u T v u ih u
48 41 45 46 47 syl3anc u v T u v - T v u ih u = T u v ih u T v u ih u
49 26 adantr u v T u
50 simpr u v v
51 ax-his3 T u v u T u v ih u = T u v ih u
52 49 50 46 51 syl3anc u v T u v ih u = T u v ih u
53 42 adantl u v T v
54 ax-his3 T v u u T v u ih u = T v u ih u
55 53 46 46 54 syl3anc u v T v u ih u = T v u ih u
56 52 55 oveq12d u v T u v ih u T v u ih u = T u v ih u T v u ih u
57 48 56 eqtr2d u v T u v ih u T v u ih u = T u v - T v u ih u
58 57 adantll u null T u v T u v ih u T v u ih u = T u v - T v u ih u
59 hvsubcl T u v T v u T u v - T v u
60 41 45 59 syl2anc u v T u v - T v u
61 1 lnfnsubi T u v T v u T T u v - T v u = T T u v T T v u
62 41 45 61 syl2anc u v T T u v - T v u = T T u v T T v u
63 1 lnfnmuli T u v T T u v = T u T v
64 26 63 sylan u v T T u v = T u T v
65 1 lnfnmuli T v u T T v u = T v T u
66 mulcom T v T u T v T u = T u T v
67 26 66 sylan2 T v u T v T u = T u T v
68 65 67 eqtrd T v u T T v u = T u T v
69 42 68 sylan v u T T v u = T u T v
70 69 ancoms u v T T v u = T u T v
71 64 70 oveq12d u v T T u v T T v u = T u T v T u T v
72 mulcl T u T v T u T v
73 26 42 72 syl2an u v T u T v
74 73 subidd u v T u T v T u T v = 0
75 62 71 74 3eqtrd u v T T u v - T v u = 0
76 elnlfn T : T u v - T v u null T T u v - T v u T T u v - T v u = 0
77 4 76 ax-mp T u v - T v u null T T u v - T v u T T u v - T v u = 0
78 60 75 77 sylanbrc u v T u v - T v u null T
79 6 chssii null T
80 ocorth null T T u v - T v u null T u null T T u v - T v u ih u = 0
81 79 80 ax-mp T u v - T v u null T u null T T u v - T v u ih u = 0
82 78 81 sylan u v u null T T u v - T v u ih u = 0
83 82 ancoms u null T u v T u v - T v u ih u = 0
84 83 anassrs u null T u v T u v - T v u ih u = 0
85 58 84 eqtrd u null T u v T u v ih u T v u ih u = 0
86 hicl v u v ih u
87 86 ancoms u v v ih u
88 49 87 mulcld u v T u v ih u
89 mulcl T v u ih u T v u ih u
90 42 29 89 syl2anr u v T v u ih u
91 88 90 subeq0ad u v T u v ih u T v u ih u = 0 T u v ih u = T v u ih u
92 91 adantll u null T u v T u v ih u T v u ih u = 0 T u v ih u = T v u ih u
93 85 92 mpbid u null T u v T u v ih u = T v u ih u
94 93 adantlr u null T u u 0 v T u v ih u = T v u ih u
95 88 adantlr u u 0 v T u v ih u
96 42 adantl u u 0 v T v
97 30 33 jca u u 0 u ih u u ih u 0
98 97 adantr u u 0 v u ih u u ih u 0
99 divmul3 T u v ih u T v u ih u u ih u 0 T u v ih u u ih u = T v T u v ih u = T v u ih u
100 95 96 98 99 syl3anc u u 0 v T u v ih u u ih u = T v T u v ih u = T v u ih u
101 100 adantlll u null T u u 0 v T u v ih u u ih u = T v T u v ih u = T v u ih u
102 94 101 mpbird u null T u u 0 v T u v ih u u ih u = T v
103 27 adantr u u 0 v T u
104 87 adantlr u u 0 v v ih u
105 div23 T u v ih u u ih u u ih u 0 T u v ih u u ih u = T u u ih u v ih u
106 103 104 98 105 syl3anc u u 0 v T u v ih u u ih u = T u u ih u v ih u
107 34 adantr u u 0 v T u u ih u
108 simpr u u 0 v v
109 simpll u u 0 v u
110 his52 T u u ih u v u v ih T u u ih u u = T u u ih u v ih u
111 107 108 109 110 syl3anc u u 0 v v ih T u u ih u u = T u u ih u v ih u
112 106 111 eqtr4d u u 0 v T u v ih u u ih u = v ih T u u ih u u
113 112 adantlll u null T u u 0 v T u v ih u u ih u = v ih T u u ih u u
114 102 113 eqtr3d u null T u u 0 v T v = v ih T u u ih u u
115 114 ralrimiva u null T u u 0 v T v = v ih T u u ih u u
116 oveq2 w = T u u ih u u v ih w = v ih T u u ih u u
117 116 eqeq2d w = T u u ih u u T v = v ih w T v = v ih T u u ih u u
118 117 ralbidv w = T u u ih u u v T v = v ih w v T v = v ih T u u ih u u
119 118 rspcev T u u ih u u v T v = v ih T u u ih u u w v T v = v ih w
120 39 115 119 syl2anc u null T u u 0 w v T v = v ih w
121 120 ex u null T u u 0 w v T v = v ih w
122 25 121 mpdan u null T u 0 w v T v = v ih w
123 122 rexlimiv u null T u 0 w v T v = v ih w
124 24 123 sylbi null T 0 w v T v = v ih w
125 22 124 pm2.61ine w v T v = v ih w