Step |
Hyp |
Ref |
Expression |
1 |
|
nlelch.1 |
⊢ 𝑇 ∈ LinFn |
2 |
|
nlelch.2 |
⊢ 𝑇 ∈ ContFn |
3 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
4 |
1
|
lnfnfi |
⊢ 𝑇 : ℋ ⟶ ℂ |
5 |
|
fveq2 |
⊢ ( ( ⊥ ‘ ( null ‘ 𝑇 ) ) = 0ℋ → ( ⊥ ‘ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ) = ( ⊥ ‘ 0ℋ ) ) |
6 |
1 2
|
nlelchi |
⊢ ( null ‘ 𝑇 ) ∈ Cℋ |
7 |
6
|
ococi |
⊢ ( ⊥ ‘ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ) = ( null ‘ 𝑇 ) |
8 |
|
choc0 |
⊢ ( ⊥ ‘ 0ℋ ) = ℋ |
9 |
5 7 8
|
3eqtr3g |
⊢ ( ( ⊥ ‘ ( null ‘ 𝑇 ) ) = 0ℋ → ( null ‘ 𝑇 ) = ℋ ) |
10 |
9
|
eleq2d |
⊢ ( ( ⊥ ‘ ( null ‘ 𝑇 ) ) = 0ℋ → ( 𝑣 ∈ ( null ‘ 𝑇 ) ↔ 𝑣 ∈ ℋ ) ) |
11 |
10
|
biimpar |
⊢ ( ( ( ⊥ ‘ ( null ‘ 𝑇 ) ) = 0ℋ ∧ 𝑣 ∈ ℋ ) → 𝑣 ∈ ( null ‘ 𝑇 ) ) |
12 |
|
elnlfn2 |
⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝑣 ∈ ( null ‘ 𝑇 ) ) → ( 𝑇 ‘ 𝑣 ) = 0 ) |
13 |
4 11 12
|
sylancr |
⊢ ( ( ( ⊥ ‘ ( null ‘ 𝑇 ) ) = 0ℋ ∧ 𝑣 ∈ ℋ ) → ( 𝑇 ‘ 𝑣 ) = 0 ) |
14 |
|
hi02 |
⊢ ( 𝑣 ∈ ℋ → ( 𝑣 ·ih 0ℎ ) = 0 ) |
15 |
14
|
adantl |
⊢ ( ( ( ⊥ ‘ ( null ‘ 𝑇 ) ) = 0ℋ ∧ 𝑣 ∈ ℋ ) → ( 𝑣 ·ih 0ℎ ) = 0 ) |
16 |
13 15
|
eqtr4d |
⊢ ( ( ( ⊥ ‘ ( null ‘ 𝑇 ) ) = 0ℋ ∧ 𝑣 ∈ ℋ ) → ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 0ℎ ) ) |
17 |
16
|
ralrimiva |
⊢ ( ( ⊥ ‘ ( null ‘ 𝑇 ) ) = 0ℋ → ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 0ℎ ) ) |
18 |
|
oveq2 |
⊢ ( 𝑤 = 0ℎ → ( 𝑣 ·ih 𝑤 ) = ( 𝑣 ·ih 0ℎ ) ) |
19 |
18
|
eqeq2d |
⊢ ( 𝑤 = 0ℎ → ( ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 0ℎ ) ) ) |
20 |
19
|
ralbidv |
⊢ ( 𝑤 = 0ℎ → ( ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 0ℎ ) ) ) |
21 |
20
|
rspcev |
⊢ ( ( 0ℎ ∈ ℋ ∧ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 0ℎ ) ) → ∃ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ) |
22 |
3 17 21
|
sylancr |
⊢ ( ( ⊥ ‘ ( null ‘ 𝑇 ) ) = 0ℋ → ∃ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ) |
23 |
6
|
choccli |
⊢ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∈ Cℋ |
24 |
23
|
chne0i |
⊢ ( ( ⊥ ‘ ( null ‘ 𝑇 ) ) ≠ 0ℋ ↔ ∃ 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) 𝑢 ≠ 0ℎ ) |
25 |
23
|
cheli |
⊢ ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) → 𝑢 ∈ ℋ ) |
26 |
4
|
ffvelrni |
⊢ ( 𝑢 ∈ ℋ → ( 𝑇 ‘ 𝑢 ) ∈ ℂ ) |
27 |
26
|
adantr |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) → ( 𝑇 ‘ 𝑢 ) ∈ ℂ ) |
28 |
|
hicl |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( 𝑢 ·ih 𝑢 ) ∈ ℂ ) |
29 |
28
|
anidms |
⊢ ( 𝑢 ∈ ℋ → ( 𝑢 ·ih 𝑢 ) ∈ ℂ ) |
30 |
29
|
adantr |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) → ( 𝑢 ·ih 𝑢 ) ∈ ℂ ) |
31 |
|
his6 |
⊢ ( 𝑢 ∈ ℋ → ( ( 𝑢 ·ih 𝑢 ) = 0 ↔ 𝑢 = 0ℎ ) ) |
32 |
31
|
necon3bid |
⊢ ( 𝑢 ∈ ℋ → ( ( 𝑢 ·ih 𝑢 ) ≠ 0 ↔ 𝑢 ≠ 0ℎ ) ) |
33 |
32
|
biimpar |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) → ( 𝑢 ·ih 𝑢 ) ≠ 0 ) |
34 |
27 30 33
|
divcld |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) → ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ∈ ℂ ) |
35 |
34
|
cjcld |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) → ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ∈ ℂ ) |
36 |
|
simpl |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) → 𝑢 ∈ ℋ ) |
37 |
|
hvmulcl |
⊢ ( ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ∈ ℂ ∧ 𝑢 ∈ ℋ ) → ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ∈ ℋ ) |
38 |
35 36 37
|
syl2anc |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) → ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ∈ ℋ ) |
39 |
38
|
adantll |
⊢ ( ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) ∧ 𝑢 ≠ 0ℎ ) → ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ∈ ℋ ) |
40 |
|
hvmulcl |
⊢ ( ( ( 𝑇 ‘ 𝑢 ) ∈ ℂ ∧ 𝑣 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ∈ ℋ ) |
41 |
26 40
|
sylan |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ∈ ℋ ) |
42 |
4
|
ffvelrni |
⊢ ( 𝑣 ∈ ℋ → ( 𝑇 ‘ 𝑣 ) ∈ ℂ ) |
43 |
|
hvmulcl |
⊢ ( ( ( 𝑇 ‘ 𝑣 ) ∈ ℂ ∧ 𝑢 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ∈ ℋ ) |
44 |
42 43
|
sylan |
⊢ ( ( 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ∈ ℋ ) |
45 |
44
|
ancoms |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ∈ ℋ ) |
46 |
|
simpl |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → 𝑢 ∈ ℋ ) |
47 |
|
his2sub |
⊢ ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ∈ ℋ ∧ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ·ih 𝑢 ) = ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ·ih 𝑢 ) − ( ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ·ih 𝑢 ) ) ) |
48 |
41 45 46 47
|
syl3anc |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ·ih 𝑢 ) = ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ·ih 𝑢 ) − ( ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ·ih 𝑢 ) ) ) |
49 |
26
|
adantr |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( 𝑇 ‘ 𝑢 ) ∈ ℂ ) |
50 |
|
simpr |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → 𝑣 ∈ ℋ ) |
51 |
|
ax-his3 |
⊢ ( ( ( 𝑇 ‘ 𝑢 ) ∈ ℂ ∧ 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ·ih 𝑢 ) = ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) ) |
52 |
49 50 46 51
|
syl3anc |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ·ih 𝑢 ) = ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) ) |
53 |
42
|
adantl |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( 𝑇 ‘ 𝑣 ) ∈ ℂ ) |
54 |
|
ax-his3 |
⊢ ( ( ( 𝑇 ‘ 𝑣 ) ∈ ℂ ∧ 𝑢 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ·ih 𝑢 ) = ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) |
55 |
53 46 46 54
|
syl3anc |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ·ih 𝑢 ) = ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) |
56 |
52 55
|
oveq12d |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ·ih 𝑢 ) − ( ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ·ih 𝑢 ) ) = ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) − ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) ) |
57 |
48 56
|
eqtr2d |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) − ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) = ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ·ih 𝑢 ) ) |
58 |
57
|
adantll |
⊢ ( ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) ∧ 𝑣 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) − ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) = ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ·ih 𝑢 ) ) |
59 |
|
hvsubcl |
⊢ ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ∈ ℋ ∧ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ∈ ℋ ) |
60 |
41 45 59
|
syl2anc |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ∈ ℋ ) |
61 |
1
|
lnfnsubi |
⊢ ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ∈ ℋ ∧ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ∈ ℋ ) → ( 𝑇 ‘ ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ) = ( ( 𝑇 ‘ ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ) − ( 𝑇 ‘ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ) ) |
62 |
41 45 61
|
syl2anc |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( 𝑇 ‘ ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ) = ( ( 𝑇 ‘ ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ) − ( 𝑇 ‘ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ) ) |
63 |
1
|
lnfnmuli |
⊢ ( ( ( 𝑇 ‘ 𝑢 ) ∈ ℂ ∧ 𝑣 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ) = ( ( 𝑇 ‘ 𝑢 ) · ( 𝑇 ‘ 𝑣 ) ) ) |
64 |
26 63
|
sylan |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ) = ( ( 𝑇 ‘ 𝑢 ) · ( 𝑇 ‘ 𝑣 ) ) ) |
65 |
1
|
lnfnmuli |
⊢ ( ( ( 𝑇 ‘ 𝑣 ) ∈ ℂ ∧ 𝑢 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) = ( ( 𝑇 ‘ 𝑣 ) · ( 𝑇 ‘ 𝑢 ) ) ) |
66 |
|
mulcom |
⊢ ( ( ( 𝑇 ‘ 𝑣 ) ∈ ℂ ∧ ( 𝑇 ‘ 𝑢 ) ∈ ℂ ) → ( ( 𝑇 ‘ 𝑣 ) · ( 𝑇 ‘ 𝑢 ) ) = ( ( 𝑇 ‘ 𝑢 ) · ( 𝑇 ‘ 𝑣 ) ) ) |
67 |
26 66
|
sylan2 |
⊢ ( ( ( 𝑇 ‘ 𝑣 ) ∈ ℂ ∧ 𝑢 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑣 ) · ( 𝑇 ‘ 𝑢 ) ) = ( ( 𝑇 ‘ 𝑢 ) · ( 𝑇 ‘ 𝑣 ) ) ) |
68 |
65 67
|
eqtrd |
⊢ ( ( ( 𝑇 ‘ 𝑣 ) ∈ ℂ ∧ 𝑢 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) = ( ( 𝑇 ‘ 𝑢 ) · ( 𝑇 ‘ 𝑣 ) ) ) |
69 |
42 68
|
sylan |
⊢ ( ( 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) = ( ( 𝑇 ‘ 𝑢 ) · ( 𝑇 ‘ 𝑣 ) ) ) |
70 |
69
|
ancoms |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) = ( ( 𝑇 ‘ 𝑢 ) · ( 𝑇 ‘ 𝑣 ) ) ) |
71 |
64 70
|
oveq12d |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( 𝑇 ‘ ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ) − ( 𝑇 ‘ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ) = ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑇 ‘ 𝑣 ) ) − ( ( 𝑇 ‘ 𝑢 ) · ( 𝑇 ‘ 𝑣 ) ) ) ) |
72 |
|
mulcl |
⊢ ( ( ( 𝑇 ‘ 𝑢 ) ∈ ℂ ∧ ( 𝑇 ‘ 𝑣 ) ∈ ℂ ) → ( ( 𝑇 ‘ 𝑢 ) · ( 𝑇 ‘ 𝑣 ) ) ∈ ℂ ) |
73 |
26 42 72
|
syl2an |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑢 ) · ( 𝑇 ‘ 𝑣 ) ) ∈ ℂ ) |
74 |
73
|
subidd |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑇 ‘ 𝑣 ) ) − ( ( 𝑇 ‘ 𝑢 ) · ( 𝑇 ‘ 𝑣 ) ) ) = 0 ) |
75 |
62 71 74
|
3eqtrd |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( 𝑇 ‘ ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ) = 0 ) |
76 |
|
elnlfn |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ∈ ( null ‘ 𝑇 ) ↔ ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ∈ ℋ ∧ ( 𝑇 ‘ ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ) = 0 ) ) ) |
77 |
4 76
|
ax-mp |
⊢ ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ∈ ( null ‘ 𝑇 ) ↔ ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ∈ ℋ ∧ ( 𝑇 ‘ ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ) = 0 ) ) |
78 |
60 75 77
|
sylanbrc |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ∈ ( null ‘ 𝑇 ) ) |
79 |
6
|
chssii |
⊢ ( null ‘ 𝑇 ) ⊆ ℋ |
80 |
|
ocorth |
⊢ ( ( null ‘ 𝑇 ) ⊆ ℋ → ( ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ∈ ( null ‘ 𝑇 ) ∧ 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ) → ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ·ih 𝑢 ) = 0 ) ) |
81 |
79 80
|
ax-mp |
⊢ ( ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ∈ ( null ‘ 𝑇 ) ∧ 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ) → ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ·ih 𝑢 ) = 0 ) |
82 |
78 81
|
sylan |
⊢ ( ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) ∧ 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ) → ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ·ih 𝑢 ) = 0 ) |
83 |
82
|
ancoms |
⊢ ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) ) → ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ·ih 𝑢 ) = 0 ) |
84 |
83
|
anassrs |
⊢ ( ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) ∧ 𝑣 ∈ ℋ ) → ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ·ih 𝑢 ) = 0 ) |
85 |
58 84
|
eqtrd |
⊢ ( ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) ∧ 𝑣 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) − ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) = 0 ) |
86 |
|
hicl |
⊢ ( ( 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( 𝑣 ·ih 𝑢 ) ∈ ℂ ) |
87 |
86
|
ancoms |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( 𝑣 ·ih 𝑢 ) ∈ ℂ ) |
88 |
49 87
|
mulcld |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) ∈ ℂ ) |
89 |
|
mulcl |
⊢ ( ( ( 𝑇 ‘ 𝑣 ) ∈ ℂ ∧ ( 𝑢 ·ih 𝑢 ) ∈ ℂ ) → ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ∈ ℂ ) |
90 |
42 29 89
|
syl2anr |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ∈ ℂ ) |
91 |
88 90
|
subeq0ad |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) − ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) = 0 ↔ ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) = ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) ) |
92 |
91
|
adantll |
⊢ ( ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) ∧ 𝑣 ∈ ℋ ) → ( ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) − ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) = 0 ↔ ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) = ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) ) |
93 |
85 92
|
mpbid |
⊢ ( ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) ∧ 𝑣 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) = ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) |
94 |
93
|
adantlr |
⊢ ( ( ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) = ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) |
95 |
88
|
adantlr |
⊢ ( ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) ∈ ℂ ) |
96 |
42
|
adantl |
⊢ ( ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( 𝑇 ‘ 𝑣 ) ∈ ℂ ) |
97 |
30 33
|
jca |
⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) → ( ( 𝑢 ·ih 𝑢 ) ∈ ℂ ∧ ( 𝑢 ·ih 𝑢 ) ≠ 0 ) ) |
98 |
97
|
adantr |
⊢ ( ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( ( 𝑢 ·ih 𝑢 ) ∈ ℂ ∧ ( 𝑢 ·ih 𝑢 ) ≠ 0 ) ) |
99 |
|
divmul3 |
⊢ ( ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) ∈ ℂ ∧ ( 𝑇 ‘ 𝑣 ) ∈ ℂ ∧ ( ( 𝑢 ·ih 𝑢 ) ∈ ℂ ∧ ( 𝑢 ·ih 𝑢 ) ≠ 0 ) ) → ( ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) / ( 𝑢 ·ih 𝑢 ) ) = ( 𝑇 ‘ 𝑣 ) ↔ ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) = ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) ) |
100 |
95 96 98 99
|
syl3anc |
⊢ ( ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) / ( 𝑢 ·ih 𝑢 ) ) = ( 𝑇 ‘ 𝑣 ) ↔ ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) = ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) ) |
101 |
100
|
adantlll |
⊢ ( ( ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) / ( 𝑢 ·ih 𝑢 ) ) = ( 𝑇 ‘ 𝑣 ) ↔ ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) = ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) ) |
102 |
94 101
|
mpbird |
⊢ ( ( ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) / ( 𝑢 ·ih 𝑢 ) ) = ( 𝑇 ‘ 𝑣 ) ) |
103 |
27
|
adantr |
⊢ ( ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( 𝑇 ‘ 𝑢 ) ∈ ℂ ) |
104 |
87
|
adantlr |
⊢ ( ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( 𝑣 ·ih 𝑢 ) ∈ ℂ ) |
105 |
|
div23 |
⊢ ( ( ( 𝑇 ‘ 𝑢 ) ∈ ℂ ∧ ( 𝑣 ·ih 𝑢 ) ∈ ℂ ∧ ( ( 𝑢 ·ih 𝑢 ) ∈ ℂ ∧ ( 𝑢 ·ih 𝑢 ) ≠ 0 ) ) → ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) / ( 𝑢 ·ih 𝑢 ) ) = ( ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) · ( 𝑣 ·ih 𝑢 ) ) ) |
106 |
103 104 98 105
|
syl3anc |
⊢ ( ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) / ( 𝑢 ·ih 𝑢 ) ) = ( ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) · ( 𝑣 ·ih 𝑢 ) ) ) |
107 |
34
|
adantr |
⊢ ( ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ∈ ℂ ) |
108 |
|
simpr |
⊢ ( ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → 𝑣 ∈ ℋ ) |
109 |
|
simpll |
⊢ ( ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → 𝑢 ∈ ℋ ) |
110 |
|
his52 |
⊢ ( ( ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ∈ ℂ ∧ 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( 𝑣 ·ih ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ) = ( ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) · ( 𝑣 ·ih 𝑢 ) ) ) |
111 |
107 108 109 110
|
syl3anc |
⊢ ( ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( 𝑣 ·ih ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ) = ( ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) · ( 𝑣 ·ih 𝑢 ) ) ) |
112 |
106 111
|
eqtr4d |
⊢ ( ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) / ( 𝑢 ·ih 𝑢 ) ) = ( 𝑣 ·ih ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ) ) |
113 |
112
|
adantlll |
⊢ ( ( ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) / ( 𝑢 ·ih 𝑢 ) ) = ( 𝑣 ·ih ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ) ) |
114 |
102 113
|
eqtr3d |
⊢ ( ( ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ) ) |
115 |
114
|
ralrimiva |
⊢ ( ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) ∧ 𝑢 ≠ 0ℎ ) → ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ) ) |
116 |
|
oveq2 |
⊢ ( 𝑤 = ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) → ( 𝑣 ·ih 𝑤 ) = ( 𝑣 ·ih ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ) ) |
117 |
116
|
eqeq2d |
⊢ ( 𝑤 = ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) → ( ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ) ) ) |
118 |
117
|
ralbidv |
⊢ ( 𝑤 = ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) → ( ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ) ) ) |
119 |
118
|
rspcev |
⊢ ( ( ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ∈ ℋ ∧ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ) ) → ∃ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ) |
120 |
39 115 119
|
syl2anc |
⊢ ( ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) ∧ 𝑢 ≠ 0ℎ ) → ∃ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ) |
121 |
120
|
ex |
⊢ ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) → ( 𝑢 ≠ 0ℎ → ∃ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ) ) |
122 |
25 121
|
mpdan |
⊢ ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) → ( 𝑢 ≠ 0ℎ → ∃ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ) ) |
123 |
122
|
rexlimiv |
⊢ ( ∃ 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) 𝑢 ≠ 0ℎ → ∃ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ) |
124 |
24 123
|
sylbi |
⊢ ( ( ⊥ ‘ ( null ‘ 𝑇 ) ) ≠ 0ℋ → ∃ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ) |
125 |
22 124
|
pm2.61ine |
⊢ ∃ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) |