Step |
Hyp |
Ref |
Expression |
1 |
|
nlelch.1 |
⊢ 𝑇 ∈ LinFn |
2 |
|
nlelch.2 |
⊢ 𝑇 ∈ ContFn |
3 |
1 2
|
riesz3i |
⊢ ∃ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) |
4 |
|
r19.26 |
⊢ ( ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) ↔ ( ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) ) |
5 |
|
oveq12 |
⊢ ( ( ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) → ( ( 𝑇 ‘ 𝑣 ) − ( 𝑇 ‘ 𝑣 ) ) = ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝑣 ∈ ℋ ∧ ( ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) ) → ( ( 𝑇 ‘ 𝑣 ) − ( 𝑇 ‘ 𝑣 ) ) = ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) ) |
7 |
1
|
lnfnfi |
⊢ 𝑇 : ℋ ⟶ ℂ |
8 |
7
|
ffvelrni |
⊢ ( 𝑣 ∈ ℋ → ( 𝑇 ‘ 𝑣 ) ∈ ℂ ) |
9 |
8
|
subidd |
⊢ ( 𝑣 ∈ ℋ → ( ( 𝑇 ‘ 𝑣 ) − ( 𝑇 ‘ 𝑣 ) ) = 0 ) |
10 |
9
|
adantr |
⊢ ( ( 𝑣 ∈ ℋ ∧ ( ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) ) → ( ( 𝑇 ‘ 𝑣 ) − ( 𝑇 ‘ 𝑣 ) ) = 0 ) |
11 |
6 10
|
eqtr3d |
⊢ ( ( 𝑣 ∈ ℋ ∧ ( ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) ) → ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) = 0 ) |
12 |
11
|
ralimiaa |
⊢ ( ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) → ∀ 𝑣 ∈ ℋ ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) = 0 ) |
13 |
4 12
|
sylbir |
⊢ ( ( ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) → ∀ 𝑣 ∈ ℋ ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) = 0 ) |
14 |
|
hvsubcl |
⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( 𝑤 −ℎ 𝑢 ) ∈ ℋ ) |
15 |
|
oveq1 |
⊢ ( 𝑣 = ( 𝑤 −ℎ 𝑢 ) → ( 𝑣 ·ih 𝑤 ) = ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑤 ) ) |
16 |
|
oveq1 |
⊢ ( 𝑣 = ( 𝑤 −ℎ 𝑢 ) → ( 𝑣 ·ih 𝑢 ) = ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑢 ) ) |
17 |
15 16
|
oveq12d |
⊢ ( 𝑣 = ( 𝑤 −ℎ 𝑢 ) → ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) = ( ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑢 ) ) ) |
18 |
17
|
eqeq1d |
⊢ ( 𝑣 = ( 𝑤 −ℎ 𝑢 ) → ( ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) = 0 ↔ ( ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑢 ) ) = 0 ) ) |
19 |
18
|
rspcv |
⊢ ( ( 𝑤 −ℎ 𝑢 ) ∈ ℋ → ( ∀ 𝑣 ∈ ℋ ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) = 0 → ( ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑢 ) ) = 0 ) ) |
20 |
14 19
|
syl |
⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ∀ 𝑣 ∈ ℋ ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) = 0 → ( ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑢 ) ) = 0 ) ) |
21 |
|
normcl |
⊢ ( ( 𝑤 −ℎ 𝑢 ) ∈ ℋ → ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) ∈ ℝ ) |
22 |
21
|
recnd |
⊢ ( ( 𝑤 −ℎ 𝑢 ) ∈ ℋ → ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) ∈ ℂ ) |
23 |
|
sqeq0 |
⊢ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) ∈ ℂ → ( ( ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) ↑ 2 ) = 0 ↔ ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) = 0 ) ) |
24 |
22 23
|
syl |
⊢ ( ( 𝑤 −ℎ 𝑢 ) ∈ ℋ → ( ( ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) ↑ 2 ) = 0 ↔ ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) = 0 ) ) |
25 |
|
norm-i |
⊢ ( ( 𝑤 −ℎ 𝑢 ) ∈ ℋ → ( ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) = 0 ↔ ( 𝑤 −ℎ 𝑢 ) = 0ℎ ) ) |
26 |
24 25
|
bitrd |
⊢ ( ( 𝑤 −ℎ 𝑢 ) ∈ ℋ → ( ( ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) ↑ 2 ) = 0 ↔ ( 𝑤 −ℎ 𝑢 ) = 0ℎ ) ) |
27 |
14 26
|
syl |
⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) ↑ 2 ) = 0 ↔ ( 𝑤 −ℎ 𝑢 ) = 0ℎ ) ) |
28 |
|
normsq |
⊢ ( ( 𝑤 −ℎ 𝑢 ) ∈ ℋ → ( ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) ↑ 2 ) = ( ( 𝑤 −ℎ 𝑢 ) ·ih ( 𝑤 −ℎ 𝑢 ) ) ) |
29 |
14 28
|
syl |
⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) ↑ 2 ) = ( ( 𝑤 −ℎ 𝑢 ) ·ih ( 𝑤 −ℎ 𝑢 ) ) ) |
30 |
|
simpl |
⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → 𝑤 ∈ ℋ ) |
31 |
|
simpr |
⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → 𝑢 ∈ ℋ ) |
32 |
|
his2sub2 |
⊢ ( ( ( 𝑤 −ℎ 𝑢 ) ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( 𝑤 −ℎ 𝑢 ) ·ih ( 𝑤 −ℎ 𝑢 ) ) = ( ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑢 ) ) ) |
33 |
14 30 31 32
|
syl3anc |
⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( 𝑤 −ℎ 𝑢 ) ·ih ( 𝑤 −ℎ 𝑢 ) ) = ( ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑢 ) ) ) |
34 |
29 33
|
eqtrd |
⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) ↑ 2 ) = ( ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑢 ) ) ) |
35 |
34
|
eqeq1d |
⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) ↑ 2 ) = 0 ↔ ( ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑢 ) ) = 0 ) ) |
36 |
|
hvsubeq0 |
⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( 𝑤 −ℎ 𝑢 ) = 0ℎ ↔ 𝑤 = 𝑢 ) ) |
37 |
27 35 36
|
3bitr3d |
⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑢 ) ) = 0 ↔ 𝑤 = 𝑢 ) ) |
38 |
20 37
|
sylibd |
⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ∀ 𝑣 ∈ ℋ ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) = 0 → 𝑤 = 𝑢 ) ) |
39 |
13 38
|
syl5 |
⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) → 𝑤 = 𝑢 ) ) |
40 |
39
|
rgen2 |
⊢ ∀ 𝑤 ∈ ℋ ∀ 𝑢 ∈ ℋ ( ( ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) → 𝑤 = 𝑢 ) |
41 |
|
oveq2 |
⊢ ( 𝑤 = 𝑢 → ( 𝑣 ·ih 𝑤 ) = ( 𝑣 ·ih 𝑢 ) ) |
42 |
41
|
eqeq2d |
⊢ ( 𝑤 = 𝑢 → ( ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) ) |
43 |
42
|
ralbidv |
⊢ ( 𝑤 = 𝑢 → ( ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) ) |
44 |
43
|
reu4 |
⊢ ( ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ( ∃ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ∀ 𝑤 ∈ ℋ ∀ 𝑢 ∈ ℋ ( ( ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) → 𝑤 = 𝑢 ) ) ) |
45 |
3 40 44
|
mpbir2an |
⊢ ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) |