Metamath Proof Explorer


Theorem riesz4i

Description: A continuous linear functional can be expressed as an inner product. Uniqueness part of Theorem 3.9 of Beran p. 104. (Contributed by NM, 13-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nlelch.1 𝑇 ∈ LinFn
nlelch.2 𝑇 ∈ ContFn
Assertion riesz4i ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑤 )

Proof

Step Hyp Ref Expression
1 nlelch.1 𝑇 ∈ LinFn
2 nlelch.2 𝑇 ∈ ContFn
3 1 2 riesz3i 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑤 )
4 r19.26 ( ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) ↔ ( ∀ 𝑣 ∈ ℋ ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ∀ 𝑣 ∈ ℋ ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) )
5 oveq12 ( ( ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) → ( ( 𝑇𝑣 ) − ( 𝑇𝑣 ) ) = ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) )
6 5 adantl ( ( 𝑣 ∈ ℋ ∧ ( ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) ) → ( ( 𝑇𝑣 ) − ( 𝑇𝑣 ) ) = ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) )
7 1 lnfnfi 𝑇 : ℋ ⟶ ℂ
8 7 ffvelrni ( 𝑣 ∈ ℋ → ( 𝑇𝑣 ) ∈ ℂ )
9 8 subidd ( 𝑣 ∈ ℋ → ( ( 𝑇𝑣 ) − ( 𝑇𝑣 ) ) = 0 )
10 9 adantr ( ( 𝑣 ∈ ℋ ∧ ( ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) ) → ( ( 𝑇𝑣 ) − ( 𝑇𝑣 ) ) = 0 )
11 6 10 eqtr3d ( ( 𝑣 ∈ ℋ ∧ ( ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) ) → ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) = 0 )
12 11 ralimiaa ( ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) → ∀ 𝑣 ∈ ℋ ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) = 0 )
13 4 12 sylbir ( ( ∀ 𝑣 ∈ ℋ ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ∀ 𝑣 ∈ ℋ ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) → ∀ 𝑣 ∈ ℋ ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) = 0 )
14 hvsubcl ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( 𝑤 𝑢 ) ∈ ℋ )
15 oveq1 ( 𝑣 = ( 𝑤 𝑢 ) → ( 𝑣 ·ih 𝑤 ) = ( ( 𝑤 𝑢 ) ·ih 𝑤 ) )
16 oveq1 ( 𝑣 = ( 𝑤 𝑢 ) → ( 𝑣 ·ih 𝑢 ) = ( ( 𝑤 𝑢 ) ·ih 𝑢 ) )
17 15 16 oveq12d ( 𝑣 = ( 𝑤 𝑢 ) → ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) = ( ( ( 𝑤 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 𝑢 ) ·ih 𝑢 ) ) )
18 17 eqeq1d ( 𝑣 = ( 𝑤 𝑢 ) → ( ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) = 0 ↔ ( ( ( 𝑤 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 𝑢 ) ·ih 𝑢 ) ) = 0 ) )
19 18 rspcv ( ( 𝑤 𝑢 ) ∈ ℋ → ( ∀ 𝑣 ∈ ℋ ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) = 0 → ( ( ( 𝑤 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 𝑢 ) ·ih 𝑢 ) ) = 0 ) )
20 14 19 syl ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ∀ 𝑣 ∈ ℋ ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) = 0 → ( ( ( 𝑤 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 𝑢 ) ·ih 𝑢 ) ) = 0 ) )
21 normcl ( ( 𝑤 𝑢 ) ∈ ℋ → ( norm ‘ ( 𝑤 𝑢 ) ) ∈ ℝ )
22 21 recnd ( ( 𝑤 𝑢 ) ∈ ℋ → ( norm ‘ ( 𝑤 𝑢 ) ) ∈ ℂ )
23 sqeq0 ( ( norm ‘ ( 𝑤 𝑢 ) ) ∈ ℂ → ( ( ( norm ‘ ( 𝑤 𝑢 ) ) ↑ 2 ) = 0 ↔ ( norm ‘ ( 𝑤 𝑢 ) ) = 0 ) )
24 22 23 syl ( ( 𝑤 𝑢 ) ∈ ℋ → ( ( ( norm ‘ ( 𝑤 𝑢 ) ) ↑ 2 ) = 0 ↔ ( norm ‘ ( 𝑤 𝑢 ) ) = 0 ) )
25 norm-i ( ( 𝑤 𝑢 ) ∈ ℋ → ( ( norm ‘ ( 𝑤 𝑢 ) ) = 0 ↔ ( 𝑤 𝑢 ) = 0 ) )
26 24 25 bitrd ( ( 𝑤 𝑢 ) ∈ ℋ → ( ( ( norm ‘ ( 𝑤 𝑢 ) ) ↑ 2 ) = 0 ↔ ( 𝑤 𝑢 ) = 0 ) )
27 14 26 syl ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( ( norm ‘ ( 𝑤 𝑢 ) ) ↑ 2 ) = 0 ↔ ( 𝑤 𝑢 ) = 0 ) )
28 normsq ( ( 𝑤 𝑢 ) ∈ ℋ → ( ( norm ‘ ( 𝑤 𝑢 ) ) ↑ 2 ) = ( ( 𝑤 𝑢 ) ·ih ( 𝑤 𝑢 ) ) )
29 14 28 syl ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( norm ‘ ( 𝑤 𝑢 ) ) ↑ 2 ) = ( ( 𝑤 𝑢 ) ·ih ( 𝑤 𝑢 ) ) )
30 simpl ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → 𝑤 ∈ ℋ )
31 simpr ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → 𝑢 ∈ ℋ )
32 his2sub2 ( ( ( 𝑤 𝑢 ) ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( 𝑤 𝑢 ) ·ih ( 𝑤 𝑢 ) ) = ( ( ( 𝑤 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 𝑢 ) ·ih 𝑢 ) ) )
33 14 30 31 32 syl3anc ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( 𝑤 𝑢 ) ·ih ( 𝑤 𝑢 ) ) = ( ( ( 𝑤 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 𝑢 ) ·ih 𝑢 ) ) )
34 29 33 eqtrd ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( norm ‘ ( 𝑤 𝑢 ) ) ↑ 2 ) = ( ( ( 𝑤 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 𝑢 ) ·ih 𝑢 ) ) )
35 34 eqeq1d ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( ( norm ‘ ( 𝑤 𝑢 ) ) ↑ 2 ) = 0 ↔ ( ( ( 𝑤 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 𝑢 ) ·ih 𝑢 ) ) = 0 ) )
36 hvsubeq0 ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( 𝑤 𝑢 ) = 0𝑤 = 𝑢 ) )
37 27 35 36 3bitr3d ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( ( ( 𝑤 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 𝑢 ) ·ih 𝑢 ) ) = 0 ↔ 𝑤 = 𝑢 ) )
38 20 37 sylibd ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ∀ 𝑣 ∈ ℋ ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) = 0 → 𝑤 = 𝑢 ) )
39 13 38 syl5 ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( ∀ 𝑣 ∈ ℋ ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ∀ 𝑣 ∈ ℋ ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) → 𝑤 = 𝑢 ) )
40 39 rgen2 𝑤 ∈ ℋ ∀ 𝑢 ∈ ℋ ( ( ∀ 𝑣 ∈ ℋ ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ∀ 𝑣 ∈ ℋ ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) → 𝑤 = 𝑢 )
41 oveq2 ( 𝑤 = 𝑢 → ( 𝑣 ·ih 𝑤 ) = ( 𝑣 ·ih 𝑢 ) )
42 41 eqeq2d ( 𝑤 = 𝑢 → ( ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) )
43 42 ralbidv ( 𝑤 = 𝑢 → ( ∀ 𝑣 ∈ ℋ ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ∀ 𝑣 ∈ ℋ ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) )
44 43 reu4 ( ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ( ∃ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ∀ 𝑤 ∈ ℋ ∀ 𝑢 ∈ ℋ ( ( ∀ 𝑣 ∈ ℋ ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ∀ 𝑣 ∈ ℋ ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) → 𝑤 = 𝑢 ) ) )
45 3 40 44 mpbir2an ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇𝑣 ) = ( 𝑣 ·ih 𝑤 )