Metamath Proof Explorer


Theorem riesz1

Description: Part 1 of the Riesz representation theorem for bounded linear functionals. A linear functional is bounded iff its value can be expressed as an inner product. Part of Theorem 17.3 of Halmos p. 31. For part 2, see riesz2 . For the continuous linear functional version, see riesz3i and riesz4 . (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion riesz1 TLinFnnormfnTyxTx=xihy

Proof

Step Hyp Ref Expression
1 lnfncnbd TLinFnTContFnnormfnT
2 elin TLinFnContFnTLinFnTContFn
3 fveq1 T=ifTLinFnContFnT×0Tx=ifTLinFnContFnT×0x
4 3 eqeq1d T=ifTLinFnContFnT×0Tx=xihyifTLinFnContFnT×0x=xihy
5 4 rexralbidv T=ifTLinFnContFnT×0yxTx=xihyyxifTLinFnContFnT×0x=xihy
6 inss1 LinFnContFnLinFn
7 0lnfn ×0LinFn
8 0cnfn ×0ContFn
9 elin ×0LinFnContFn×0LinFn×0ContFn
10 7 8 9 mpbir2an ×0LinFnContFn
11 10 elimel ifTLinFnContFnT×0LinFnContFn
12 6 11 sselii ifTLinFnContFnT×0LinFn
13 inss2 LinFnContFnContFn
14 13 11 sselii ifTLinFnContFnT×0ContFn
15 12 14 riesz3i yxifTLinFnContFnT×0x=xihy
16 5 15 dedth TLinFnContFnyxTx=xihy
17 2 16 sylbir TLinFnTContFnyxTx=xihy
18 17 ex TLinFnTContFnyxTx=xihy
19 normcl ynormy
20 19 adantl TLinFnynormy
21 fveq2 Tx=xihyTx=xihy
22 21 adantl TLinFnxyTx=xihyTx=xihy
23 bcs xyxihynormxnormy
24 normcl xnormx
25 recn normxnormx
26 recn normynormy
27 mulcom normxnormynormxnormy=normynormx
28 25 26 27 syl2an normxnormynormxnormy=normynormx
29 24 19 28 syl2an xynormxnormy=normynormx
30 23 29 breqtrd xyxihynormynormx
31 30 adantll TLinFnxyxihynormynormx
32 31 adantr TLinFnxyTx=xihyxihynormynormx
33 22 32 eqbrtrd TLinFnxyTx=xihyTxnormynormx
34 33 ex TLinFnxyTx=xihyTxnormynormx
35 34 an32s TLinFnyxTx=xihyTxnormynormx
36 35 ralimdva TLinFnyxTx=xihyxTxnormynormx
37 oveq1 z=normyznormx=normynormx
38 37 breq2d z=normyTxznormxTxnormynormx
39 38 ralbidv z=normyxTxznormxxTxnormynormx
40 39 rspcev normyxTxnormynormxzxTxznormx
41 20 36 40 syl6an TLinFnyxTx=xihyzxTxznormx
42 41 rexlimdva TLinFnyxTx=xihyzxTxznormx
43 lnfncon TLinFnTContFnzxTxznormx
44 42 43 sylibrd TLinFnyxTx=xihyTContFn
45 18 44 impbid TLinFnTContFnyxTx=xihy
46 1 45 bitr3d TLinFnnormfnTyxTx=xihy