Description: Part 1 of the Riesz representation theorem for bounded linear functionals. A linear functional is bounded iff its value can be expressed as an inner product. Part of Theorem 17.3 of Halmos p. 31. For part 2, see riesz2 . For the continuous linear functional version, see riesz3i and riesz4 . (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | riesz1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnfncnbd | |
|
2 | elin | |
|
3 | fveq1 | |
|
4 | 3 | eqeq1d | |
5 | 4 | rexralbidv | |
6 | inss1 | |
|
7 | 0lnfn | |
|
8 | 0cnfn | |
|
9 | elin | |
|
10 | 7 8 9 | mpbir2an | |
11 | 10 | elimel | |
12 | 6 11 | sselii | |
13 | inss2 | |
|
14 | 13 11 | sselii | |
15 | 12 14 | riesz3i | |
16 | 5 15 | dedth | |
17 | 2 16 | sylbir | |
18 | 17 | ex | |
19 | normcl | |
|
20 | 19 | adantl | |
21 | fveq2 | |
|
22 | 21 | adantl | |
23 | bcs | |
|
24 | normcl | |
|
25 | recn | |
|
26 | recn | |
|
27 | mulcom | |
|
28 | 25 26 27 | syl2an | |
29 | 24 19 28 | syl2an | |
30 | 23 29 | breqtrd | |
31 | 30 | adantll | |
32 | 31 | adantr | |
33 | 22 32 | eqbrtrd | |
34 | 33 | ex | |
35 | 34 | an32s | |
36 | 35 | ralimdva | |
37 | oveq1 | |
|
38 | 37 | breq2d | |
39 | 38 | ralbidv | |
40 | 39 | rspcev | |
41 | 20 36 40 | syl6an | |
42 | 41 | rexlimdva | |
43 | lnfncon | |
|
44 | 42 43 | sylibrd | |
45 | 18 44 | impbid | |
46 | 1 45 | bitr3d | |