Metamath Proof Explorer


Theorem ringabl

Description: A ring is an Abelian group. (Contributed by NM, 26-Aug-2011)

Ref Expression
Assertion ringabl RRingRAbel

Proof

Step Hyp Ref Expression
1 eqidd RRingBaseR=BaseR
2 eqidd RRing+R=+R
3 ringgrp RRingRGrp
4 eqid BaseR=BaseR
5 eqid +R=+R
6 4 5 ringcom RRingxBaseRyBaseRx+Ry=y+Rx
7 1 2 3 6 isabld RRingRAbel