Metamath Proof Explorer


Theorem ringassd

Description: Associative law for multiplication in a ring. (Contributed by SN, 14-Aug-2024)

Ref Expression
Hypotheses ringassd.b B=BaseR
ringassd.t ·˙=R
ringassd.r φRRing
ringassd.x φXB
ringassd.y φYB
ringassd.z φZB
Assertion ringassd φX·˙Y·˙Z=X·˙Y·˙Z

Proof

Step Hyp Ref Expression
1 ringassd.b B=BaseR
2 ringassd.t ·˙=R
3 ringassd.r φRRing
4 ringassd.x φXB
5 ringassd.y φYB
6 ringassd.z φZB
7 1 2 ringass RRingXBYBZBX·˙Y·˙Z=X·˙Y·˙Z
8 3 4 5 6 7 syl13anc φX·˙Y·˙Z=X·˙Y·˙Z