Metamath Proof Explorer


Theorem ringcbasbasALTV

Description: An element of the base set of the base set of the category of rings (i.e. the base set of a ring) belongs to the considered weak universe. (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses ringcbasbasALTV.r C=RingCatALTVU
ringcbasbasALTV.b B=BaseC
ringcbasbasALTV.u φUWUni
Assertion ringcbasbasALTV φRBBaseRU

Proof

Step Hyp Ref Expression
1 ringcbasbasALTV.r C=RingCatALTVU
2 ringcbasbasALTV.b B=BaseC
3 ringcbasbasALTV.u φUWUni
4 1 2 3 ringcbasALTV φB=URing
5 4 eleq2d φRBRURing
6 elin RURingRURRing
7 baseid Base=SlotBasendx
8 simpl UWUniRUUWUni
9 simpr UWUniRURU
10 7 8 9 wunstr UWUniRUBaseRU
11 10 ex UWUniRUBaseRU
12 11 3 syl11 RUφBaseRU
13 12 adantr RURRingφBaseRU
14 6 13 sylbi RURingφBaseRU
15 14 com12 φRURingBaseRU
16 5 15 sylbid φRBBaseRU
17 16 imp φRBBaseRU