Metamath Proof Explorer


Theorem ringid

Description: The multiplication operation of a unital ring has (one or more) identity elements. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Mario Carneiro, 22-Dec-2013) (Revised by AV, 24-Aug-2021)

Ref Expression
Hypotheses ringid.b B=BaseR
ringid.t ·˙=R
Assertion ringid RRingXBuBu·˙X=XX·˙u=X

Proof

Step Hyp Ref Expression
1 ringid.b B=BaseR
2 ringid.t ·˙=R
3 eqid 1R=1R
4 1 3 ringidcl RRing1RB
5 4 adantr RRingXB1RB
6 oveq1 u=1Ru·˙X=1R·˙X
7 6 eqeq1d u=1Ru·˙X=X1R·˙X=X
8 oveq2 u=1RX·˙u=X·˙1R
9 8 eqeq1d u=1RX·˙u=XX·˙1R=X
10 7 9 anbi12d u=1Ru·˙X=XX·˙u=X1R·˙X=XX·˙1R=X
11 10 adantl RRingXBu=1Ru·˙X=XX·˙u=X1R·˙X=XX·˙1R=X
12 1 2 3 ringidmlem RRingXB1R·˙X=XX·˙1R=X
13 5 11 12 rspcedvd RRingXBuBu·˙X=XX·˙u=X