Metamath Proof Explorer


Theorem ringinvnz1ne0

Description: In a unital ring, a left invertible element is different from zero iff .1. =/= .0. . (Contributed by FL, 18-Apr-2010) (Revised by AV, 24-Aug-2021)

Ref Expression
Hypotheses ringinvnzdiv.b B=BaseR
ringinvnzdiv.t ·˙=R
ringinvnzdiv.u 1˙=1R
ringinvnzdiv.z 0˙=0R
ringinvnzdiv.r φRRing
ringinvnzdiv.x φXB
ringinvnzdiv.a φaBa·˙X=1˙
Assertion ringinvnz1ne0 φX0˙1˙0˙

Proof

Step Hyp Ref Expression
1 ringinvnzdiv.b B=BaseR
2 ringinvnzdiv.t ·˙=R
3 ringinvnzdiv.u 1˙=1R
4 ringinvnzdiv.z 0˙=0R
5 ringinvnzdiv.r φRRing
6 ringinvnzdiv.x φXB
7 ringinvnzdiv.a φaBa·˙X=1˙
8 oveq2 X=0˙a·˙X=a·˙0˙
9 1 2 4 ringrz RRingaBa·˙0˙=0˙
10 5 9 sylan φaBa·˙0˙=0˙
11 eqeq12 a·˙X=1˙a·˙0˙=0˙a·˙X=a·˙0˙1˙=0˙
12 11 biimpd a·˙X=1˙a·˙0˙=0˙a·˙X=a·˙0˙1˙=0˙
13 12 ex a·˙X=1˙a·˙0˙=0˙a·˙X=a·˙0˙1˙=0˙
14 10 13 mpan9 φaBa·˙X=1˙a·˙X=a·˙0˙1˙=0˙
15 8 14 syl5 φaBa·˙X=1˙X=0˙1˙=0˙
16 oveq2 1˙=0˙X·˙1˙=X·˙0˙
17 1 2 3 ringridm RRingXBX·˙1˙=X
18 1 2 4 ringrz RRingXBX·˙0˙=0˙
19 17 18 eqeq12d RRingXBX·˙1˙=X·˙0˙X=0˙
20 19 biimpd RRingXBX·˙1˙=X·˙0˙X=0˙
21 5 6 20 syl2anc φX·˙1˙=X·˙0˙X=0˙
22 21 ad2antrr φaBa·˙X=1˙X·˙1˙=X·˙0˙X=0˙
23 16 22 syl5 φaBa·˙X=1˙1˙=0˙X=0˙
24 15 23 impbid φaBa·˙X=1˙X=0˙1˙=0˙
25 24 7 r19.29a φX=0˙1˙=0˙
26 25 necon3bid φX0˙1˙0˙