Description: In a unital ring, a left invertible element is different from zero iff .1. =/= .0. . (Contributed by FL, 18-Apr-2010) (Revised by AV, 24-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringinvnzdiv.b | |
|
ringinvnzdiv.t | |
||
ringinvnzdiv.u | |
||
ringinvnzdiv.z | |
||
ringinvnzdiv.r | |
||
ringinvnzdiv.x | |
||
ringinvnzdiv.a | |
||
Assertion | ringinvnz1ne0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringinvnzdiv.b | |
|
2 | ringinvnzdiv.t | |
|
3 | ringinvnzdiv.u | |
|
4 | ringinvnzdiv.z | |
|
5 | ringinvnzdiv.r | |
|
6 | ringinvnzdiv.x | |
|
7 | ringinvnzdiv.a | |
|
8 | oveq2 | |
|
9 | 1 2 4 | ringrz | |
10 | 5 9 | sylan | |
11 | eqeq12 | |
|
12 | 11 | biimpd | |
13 | 12 | ex | |
14 | 10 13 | mpan9 | |
15 | 8 14 | syl5 | |
16 | oveq2 | |
|
17 | 1 2 3 | ringridm | |
18 | 1 2 4 | ringrz | |
19 | 17 18 | eqeq12d | |
20 | 19 | biimpd | |
21 | 5 6 20 | syl2anc | |
22 | 21 | ad2antrr | |
23 | 16 22 | syl5 | |
24 | 15 23 | impbid | |
25 | 24 7 | r19.29a | |
26 | 25 | necon3bid | |