Metamath Proof Explorer


Theorem riotaclb

Description: Bidirectional closure of restricted iota when domain is not empty. (Contributed by NM, 28-Feb-2013) (Revised by Mario Carneiro, 24-Dec-2016) (Revised by NM, 13-Sep-2018)

Ref Expression
Assertion riotaclb ¬A∃!xAφιxA|φA

Proof

Step Hyp Ref Expression
1 riotacl ∃!xAφιxA|φA
2 riotaund ¬∃!xAφιxA|φ=
3 2 eleq1d ¬∃!xAφιxA|φAA
4 3 notbid ¬∃!xAφ¬ιxA|φA¬A
5 4 biimprcd ¬A¬∃!xAφ¬ιxA|φA
6 5 con4d ¬AιxA|φA∃!xAφ
7 1 6 impbid2 ¬A∃!xAφιxA|φA