Metamath Proof Explorer


Theorem riotaclbgBAD

Description: Closure of restricted iota. (Contributed by NM, 28-Feb-2013) (Revised by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion riotaclbgBAD AV∃!xAφιxA|φA

Proof

Step Hyp Ref Expression
1 riotacl ∃!xAφιxA|φA
2 undefnel2 AV¬UndefAA
3 iffalse ¬∃!xAφif∃!xAφιx|xAφUndefx|xA=Undefx|xA
4 ax-riotaBAD ιxA|φ=if∃!xAφιx|xAφUndefx|xA
5 abid1 A=x|xA
6 5 fveq2i UndefA=Undefx|xA
7 3 4 6 3eqtr4g ¬∃!xAφιxA|φ=UndefA
8 7 eleq1d ¬∃!xAφιxA|φAUndefAA
9 8 notbid ¬∃!xAφ¬ιxA|φA¬UndefAA
10 2 9 syl5ibrcom AV¬∃!xAφ¬ιxA|φA
11 10 con4d AVιxA|φA∃!xAφ
12 1 11 impbid2 AV∃!xAφιxA|φA