Metamath Proof Explorer


Theorem rlimadd

Description: Limit of the sum of two converging functions. Proposition 12-2.1(a) of Gleason p. 168. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Hypotheses rlimadd.3 φxABV
rlimadd.4 φxACV
rlimadd.5 φxABD
rlimadd.6 φxACE
Assertion rlimadd φxAB+CD+E

Proof

Step Hyp Ref Expression
1 rlimadd.3 φxABV
2 rlimadd.4 φxACV
3 rlimadd.5 φxABD
4 rlimadd.6 φxACE
5 1 3 rlimmptrcl φxAB
6 2 4 rlimmptrcl φxAC
7 5 6 addcld φxAB+C
8 rlimcl xABDD
9 3 8 syl φD
10 rlimcl xACEE
11 4 10 syl φE
12 9 11 addcld φD+E
13 simpr φy+y+
14 9 adantr φy+D
15 11 adantr φy+E
16 addcn2 y+DEz+w+uvuD<zvE<wu+v-D+E<y
17 13 14 15 16 syl3anc φy+z+w+uvuD<zvE<wu+v-D+E<y
18 5 6 7 12 3 4 17 rlimcn3 φxAB+CD+E