Description: Complex number addition is a continuous function. Part of Proposition 14-4.16 of Gleason p. 243. (We write out the definition directly because df-cn and df-cncf are not yet available to us. See addcn for the abbreviated version.) (Contributed by Mario Carneiro, 31-Jan-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | addcn2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rphalfcl | |
|
2 | 1 | 3ad2ant1 | |
3 | simprl | |
|
4 | simpl2 | |
|
5 | simprr | |
|
6 | 3 4 5 | pnpcan2d | |
7 | 6 | fveq2d | |
8 | 7 | breq1d | |
9 | simpl3 | |
|
10 | 4 5 9 | pnpcand | |
11 | 10 | fveq2d | |
12 | 11 | breq1d | |
13 | 8 12 | anbi12d | |
14 | addcl | |
|
15 | 14 | adantl | |
16 | 4 9 | addcld | |
17 | 4 5 | addcld | |
18 | simpl1 | |
|
19 | 18 | rpred | |
20 | abs3lem | |
|
21 | 15 16 17 19 20 | syl22anc | |
22 | 13 21 | sylbird | |
23 | 22 | ralrimivva | |
24 | breq2 | |
|
25 | 24 | anbi1d | |
26 | 25 | imbi1d | |
27 | 26 | 2ralbidv | |
28 | breq2 | |
|
29 | 28 | anbi2d | |
30 | 29 | imbi1d | |
31 | 30 | 2ralbidv | |
32 | 27 31 | rspc2ev | |
33 | 2 2 23 32 | syl3anc | |