Metamath Proof Explorer


Theorem addcn2

Description: Complex number addition is a continuous function. Part of Proposition 14-4.16 of Gleason p. 243. (We write out the definition directly because df-cn and df-cncf are not yet available to us. See addcn for the abbreviated version.) (Contributed by Mario Carneiro, 31-Jan-2014)

Ref Expression
Assertion addcn2 A+BCy+z+uvuB<yvC<zu+v-B+C<A

Proof

Step Hyp Ref Expression
1 rphalfcl A+A2+
2 1 3ad2ant1 A+BCA2+
3 simprl A+BCuvu
4 simpl2 A+BCuvB
5 simprr A+BCuvv
6 3 4 5 pnpcan2d A+BCuvu+v-B+v=uB
7 6 fveq2d A+BCuvu+v-B+v=uB
8 7 breq1d A+BCuvu+v-B+v<A2uB<A2
9 simpl3 A+BCuvC
10 4 5 9 pnpcand A+BCuvB+v-B+C=vC
11 10 fveq2d A+BCuvB+v-B+C=vC
12 11 breq1d A+BCuvB+v-B+C<A2vC<A2
13 8 12 anbi12d A+BCuvu+v-B+v<A2B+v-B+C<A2uB<A2vC<A2
14 addcl uvu+v
15 14 adantl A+BCuvu+v
16 4 9 addcld A+BCuvB+C
17 4 5 addcld A+BCuvB+v
18 simpl1 A+BCuvA+
19 18 rpred A+BCuvA
20 abs3lem u+vB+CB+vAu+v-B+v<A2B+v-B+C<A2u+v-B+C<A
21 15 16 17 19 20 syl22anc A+BCuvu+v-B+v<A2B+v-B+C<A2u+v-B+C<A
22 13 21 sylbird A+BCuvuB<A2vC<A2u+v-B+C<A
23 22 ralrimivva A+BCuvuB<A2vC<A2u+v-B+C<A
24 breq2 y=A2uB<yuB<A2
25 24 anbi1d y=A2uB<yvC<zuB<A2vC<z
26 25 imbi1d y=A2uB<yvC<zu+v-B+C<AuB<A2vC<zu+v-B+C<A
27 26 2ralbidv y=A2uvuB<yvC<zu+v-B+C<AuvuB<A2vC<zu+v-B+C<A
28 breq2 z=A2vC<zvC<A2
29 28 anbi2d z=A2uB<A2vC<zuB<A2vC<A2
30 29 imbi1d z=A2uB<A2vC<zu+v-B+C<AuB<A2vC<A2u+v-B+C<A
31 30 2ralbidv z=A2uvuB<A2vC<zu+v-B+C<AuvuB<A2vC<A2u+v-B+C<A
32 27 31 rspc2ev A2+A2+uvuB<A2vC<A2u+v-B+C<Ay+z+uvuB<yvC<zu+v-B+C<A
33 2 2 23 32 syl3anc A+BCy+z+uvuB<yvC<zu+v-B+C<A