Metamath Proof Explorer


Theorem addcn2

Description: Complex number addition is a continuous function. Part of Proposition 14-4.16 of Gleason p. 243. (We write out the definition directly because df-cn and df-cncf are not yet available to us. See addcn for the abbreviated version.) (Contributed by Mario Carneiro, 31-Jan-2014)

Ref Expression
Assertion addcn2 A + B C y + z + u v u B < y v C < z u + v - B + C < A

Proof

Step Hyp Ref Expression
1 rphalfcl A + A 2 +
2 1 3ad2ant1 A + B C A 2 +
3 simprl A + B C u v u
4 simpl2 A + B C u v B
5 simprr A + B C u v v
6 3 4 5 pnpcan2d A + B C u v u + v - B + v = u B
7 6 fveq2d A + B C u v u + v - B + v = u B
8 7 breq1d A + B C u v u + v - B + v < A 2 u B < A 2
9 simpl3 A + B C u v C
10 4 5 9 pnpcand A + B C u v B + v - B + C = v C
11 10 fveq2d A + B C u v B + v - B + C = v C
12 11 breq1d A + B C u v B + v - B + C < A 2 v C < A 2
13 8 12 anbi12d A + B C u v u + v - B + v < A 2 B + v - B + C < A 2 u B < A 2 v C < A 2
14 addcl u v u + v
15 14 adantl A + B C u v u + v
16 4 9 addcld A + B C u v B + C
17 4 5 addcld A + B C u v B + v
18 simpl1 A + B C u v A +
19 18 rpred A + B C u v A
20 abs3lem u + v B + C B + v A u + v - B + v < A 2 B + v - B + C < A 2 u + v - B + C < A
21 15 16 17 19 20 syl22anc A + B C u v u + v - B + v < A 2 B + v - B + C < A 2 u + v - B + C < A
22 13 21 sylbird A + B C u v u B < A 2 v C < A 2 u + v - B + C < A
23 22 ralrimivva A + B C u v u B < A 2 v C < A 2 u + v - B + C < A
24 breq2 y = A 2 u B < y u B < A 2
25 24 anbi1d y = A 2 u B < y v C < z u B < A 2 v C < z
26 25 imbi1d y = A 2 u B < y v C < z u + v - B + C < A u B < A 2 v C < z u + v - B + C < A
27 26 2ralbidv y = A 2 u v u B < y v C < z u + v - B + C < A u v u B < A 2 v C < z u + v - B + C < A
28 breq2 z = A 2 v C < z v C < A 2
29 28 anbi2d z = A 2 u B < A 2 v C < z u B < A 2 v C < A 2
30 29 imbi1d z = A 2 u B < A 2 v C < z u + v - B + C < A u B < A 2 v C < A 2 u + v - B + C < A
31 30 2ralbidv z = A 2 u v u B < A 2 v C < z u + v - B + C < A u v u B < A 2 v C < A 2 u + v - B + C < A
32 27 31 rspc2ev A 2 + A 2 + u v u B < A 2 v C < A 2 u + v - B + C < A y + z + u v u B < y v C < z u + v - B + C < A
33 2 2 23 32 syl3anc A + B C y + z + u v u B < y v C < z u + v - B + C < A