Metamath Proof Explorer


Theorem rlimcn1b

Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses rlimcn1b.1 φkABX
rlimcn1b.2 φCX
rlimcn1b.3 φkABC
rlimcn1b.4 φF:X
rlimcn1b.5 φx+y+zXzC<yFzFC<x
Assertion rlimcn1b φkAFBFC

Proof

Step Hyp Ref Expression
1 rlimcn1b.1 φkABX
2 rlimcn1b.2 φCX
3 rlimcn1b.3 φkABC
4 rlimcn1b.4 φF:X
5 rlimcn1b.5 φx+y+zXzC<yFzFC<x
6 4 1 cofmpt φFkAB=kAFB
7 1 fmpttd φkAB:AX
8 7 2 3 4 5 rlimcn1 φFkABFC
9 6 8 eqbrtrrd φkAFBFC