Metamath Proof Explorer


Theorem rlimconst

Description: A constant sequence converges to its value. (Contributed by Mario Carneiro, 16-Sep-2014)

Ref Expression
Assertion rlimconst ABxABB

Proof

Step Hyp Ref Expression
1 0re 0
2 simpllr ABy+xAB
3 2 subidd ABy+xABB=0
4 3 fveq2d ABy+xABB=0
5 abs0 0=0
6 4 5 eqtrdi ABy+xABB=0
7 rpgt0 y+0<y
8 7 ad2antlr ABy+xA0<y
9 6 8 eqbrtrd ABy+xABB<y
10 9 a1d ABy+xA0xBB<y
11 10 ralrimiva ABy+xA0xBB<y
12 breq1 z=0zx0x
13 12 rspceaimv 0xA0xBB<yzxAzxBB<y
14 1 11 13 sylancr ABy+zxAzxBB<y
15 14 ralrimiva ABy+zxAzxBB<y
16 simplr ABxAB
17 16 ralrimiva ABxAB
18 simpl ABA
19 simpr ABB
20 17 18 19 rlim2 ABxABBy+zxAzxBB<y
21 15 20 mpbird ABxABB