Metamath Proof Explorer


Theorem rlimneg

Description: Limit of the negative of a sequence. (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses rlimneg.1 φkABV
rlimneg.2 φkABC
Assertion rlimneg φkABC

Proof

Step Hyp Ref Expression
1 rlimneg.1 φkABV
2 rlimneg.2 φkABC
3 0cnd φkA0
4 1 2 rlimmptrcl φkAB
5 1 ralrimiva φkABV
6 dmmptg kABVdomkAB=A
7 5 6 syl φdomkAB=A
8 rlimss kABCdomkAB
9 2 8 syl φdomkAB
10 7 9 eqsstrrd φA
11 0cn 0
12 rlimconst A0kA00
13 10 11 12 sylancl φkA00
14 3 4 13 2 rlimsub φkA0B0C
15 df-neg B=0B
16 15 mpteq2i kAB=kA0B
17 df-neg C=0C
18 14 16 17 3brtr4g φkABC