Metamath Proof Explorer


Theorem rmfsupp

Description: A mapping of a multiplication of a constant with a function into a ring is finitely supported if the function is finitely supported. (Contributed by AV, 9-Jun-2019)

Ref Expression
Hypothesis rmsuppfi.r R=BaseM
Assertion rmfsupp MRingVXCRARVfinSupp0MAfinSupp0MvVCMAv

Proof

Step Hyp Ref Expression
1 rmsuppfi.r R=BaseM
2 funmpt FunvVCMAv
3 2 a1i MRingVXCRARVfinSupp0MAFunvVCMAv
4 id finSupp0MAfinSupp0MA
5 4 fsuppimpd finSupp0MAAsupp0MFin
6 1 rmsuppfi MRingVXCRARVAsupp0MFinvVCMAvsupp0MFin
7 5 6 syl3an3 MRingVXCRARVfinSupp0MAvVCMAvsupp0MFin
8 mptexg VXvVCMAvV
9 8 3ad2ant2 MRingVXCRvVCMAvV
10 9 3ad2ant1 MRingVXCRARVfinSupp0MAvVCMAvV
11 fvex 0MV
12 isfsupp vVCMAvV0MVfinSupp0MvVCMAvFunvVCMAvvVCMAvsupp0MFin
13 10 11 12 sylancl MRingVXCRARVfinSupp0MAfinSupp0MvVCMAvFunvVCMAvvVCMAvsupp0MFin
14 3 7 13 mpbir2and MRingVXCRARVfinSupp0MAfinSupp0MvVCMAv