Metamath Proof Explorer


Theorem rmosn

Description: A restricted at-most-one quantifier over a singleton is always true. (Contributed by AV, 3-Apr-2023)

Ref Expression
Assertion rmosn *xAφ

Proof

Step Hyp Ref Expression
1 idd AV[˙A/x]˙φ[˙A/x]˙φ
2 nfsbc1v x[˙A/x]˙φ
3 sbceq1a x=Aφ[˙A/x]˙φ
4 2 3 rexsngf AVxAφ[˙A/x]˙φ
5 2 3 reusngf AV∃!xAφ[˙A/x]˙φ
6 1 4 5 3imtr4d AVxAφ∃!xAφ
7 rmo5 *xAφxAφ∃!xAφ
8 6 7 sylibr AV*xAφ
9 rmo0 *xφ
10 snprc ¬AVA=
11 rmoeq1 A=*xAφ*xφ
12 10 11 sylbi ¬AV*xAφ*xφ
13 9 12 mpbiri ¬AV*xAφ
14 8 13 pm2.61i *xAφ