Metamath Proof Explorer


Theorem rmosn

Description: A restricted at-most-one quantifier over a singleton is always true. (Contributed by AV, 3-Apr-2023)

Ref Expression
Assertion rmosn * x A φ

Proof

Step Hyp Ref Expression
1 idd A V [˙A / x]˙ φ [˙A / x]˙ φ
2 nfsbc1v x [˙A / x]˙ φ
3 sbceq1a x = A φ [˙A / x]˙ φ
4 2 3 rexsngf A V x A φ [˙A / x]˙ φ
5 2 3 reusngf A V ∃! x A φ [˙A / x]˙ φ
6 1 4 5 3imtr4d A V x A φ ∃! x A φ
7 rmo5 * x A φ x A φ ∃! x A φ
8 6 7 sylibr A V * x A φ
9 rmo0 * x φ
10 snprc ¬ A V A =
11 rmoeq1 A = * x A φ * x φ
12 10 11 sylbi ¬ A V * x A φ * x φ
13 9 12 mpbiri ¬ A V * x A φ
14 8 13 pm2.61i * x A φ