Metamath Proof Explorer


Theorem rmxynorm

Description: The X and Y sequences define a solution to the corresponding Pell equation. (Contributed by Stefan O'Rear, 22-Sep-2014)

Ref Expression
Assertion rmxynorm A2NAXrmN2A21AYrmN2=1

Proof

Step Hyp Ref Expression
1 simpr A2NN
2 eqidd A2AXrmN=AXrmN
3 eqidd NAYrmN=AYrmN
4 2 3 anim12i A2NAXrmN=AXrmNAYrmN=AYrmN
5 oveq2 a=NAXrma=AXrmN
6 5 eqeq2d a=NAXrmN=AXrmaAXrmN=AXrmN
7 oveq2 a=NAYrma=AYrmN
8 7 eqeq2d a=NAYrmN=AYrmaAYrmN=AYrmN
9 6 8 anbi12d a=NAXrmN=AXrmaAYrmN=AYrmaAXrmN=AXrmNAYrmN=AYrmN
10 9 rspcev NAXrmN=AXrmNAYrmN=AYrmNaAXrmN=AXrmaAYrmN=AYrma
11 1 4 10 syl2anc A2NaAXrmN=AXrmaAYrmN=AYrma
12 simpl A2NA2
13 frmx Xrm:2×0
14 13 fovcl A2NAXrmN0
15 frmy Yrm:2×
16 15 fovcl A2NAYrmN
17 rmxycomplete A2AXrmN0AYrmNAXrmN2A21AYrmN2=1aAXrmN=AXrmaAYrmN=AYrma
18 12 14 16 17 syl3anc A2NAXrmN2A21AYrmN2=1aAXrmN=AXrmaAYrmN=AYrma
19 11 18 mpbird A2NAXrmN2A21AYrmN2=1