Metamath Proof Explorer


Theorem rmyp1

Description: Special addition of 1 formula for Y sequence. Part 2 of equation 2.9 of JonesMatijasevic p. 695. (Contributed by Stefan O'Rear, 24-Sep-2014)

Ref Expression
Assertion rmyp1 A2NAYrmN+1=AYrmNA+AXrmN

Proof

Step Hyp Ref Expression
1 1z 1
2 rmyadd A2N1AYrmN+1=AYrmNAXrm1+AXrmNAYrm1
3 1 2 mp3an3 A2NAYrmN+1=AYrmNAXrm1+AXrmNAYrm1
4 rmx1 A2AXrm1=A
5 4 oveq2d A2AYrmNAXrm1=AYrmNA
6 5 adantr A2NAYrmNAXrm1=AYrmNA
7 rmy1 A2AYrm1=1
8 7 oveq2d A2AXrmNAYrm1=AXrmN1
9 8 adantr A2NAXrmNAYrm1=AXrmN1
10 frmx Xrm:2×0
11 10 fovcl A2NAXrmN0
12 11 nn0cnd A2NAXrmN
13 12 mulridd A2NAXrmN1=AXrmN
14 9 13 eqtrd A2NAXrmNAYrm1=AXrmN
15 6 14 oveq12d A2NAYrmNAXrm1+AXrmNAYrm1=AYrmNA+AXrmN
16 3 15 eqtrd A2NAYrmN+1=AYrmNA+AXrmN