Metamath Proof Explorer


Theorem rngccat

Description: The category of non-unital rings is a category. (Contributed by AV, 27-Feb-2020) (Revised by AV, 9-Mar-2020)

Ref Expression
Hypothesis rngccat.c C=RngCatU
Assertion rngccat UVCCat

Proof

Step Hyp Ref Expression
1 rngccat.c C=RngCatU
2 id UVUV
3 eqidd UVURng=URng
4 eqidd UVRngHomoURng×URng=RngHomoURng×URng
5 1 2 3 4 rngcval UVC=ExtStrCatUcatRngHomoURng×URng
6 eqid ExtStrCatUcatRngHomoURng×URng=ExtStrCatUcatRngHomoURng×URng
7 eqid ExtStrCatU=ExtStrCatU
8 eqidd UVRngU=RngU
9 incom URng=RngU
10 9 a1i UVURng=RngU
11 10 sqxpeqd UVURng×URng=RngU×RngU
12 11 reseq2d UVRngHomoURng×URng=RngHomoRngU×RngU
13 7 2 8 12 rnghmsubcsetc UVRngHomoURng×URngSubcatExtStrCatU
14 6 13 subccat UVExtStrCatUcatRngHomoURng×URngCat
15 5 14 eqeltrd UVCCat