Metamath Proof Explorer


Theorem rngchomfvalALTV

Description: Set of arrows of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020)

Ref Expression
Hypotheses rngcbasALTV.c C = RngCatALTV U
rngcbasALTV.b B = Base C
rngcbasALTV.u φ U V
rngchomfvalALTV.h H = Hom C
Assertion rngchomfvalALTV φ H = x B , y B x RngHomo y

Proof

Step Hyp Ref Expression
1 rngcbasALTV.c C = RngCatALTV U
2 rngcbasALTV.b B = Base C
3 rngcbasALTV.u φ U V
4 rngchomfvalALTV.h H = Hom C
5 1 2 3 rngcbasALTV φ B = U Rng
6 eqidd φ x B , y B x RngHomo y = x B , y B x RngHomo y
7 eqidd φ v B × B , z B f 2 nd v RngHomo z , g 1 st v RngHomo 2 nd v f g = v B × B , z B f 2 nd v RngHomo z , g 1 st v RngHomo 2 nd v f g
8 1 3 5 6 7 rngcvalALTV φ C = Base ndx B Hom ndx x B , y B x RngHomo y comp ndx v B × B , z B f 2 nd v RngHomo z , g 1 st v RngHomo 2 nd v f g
9 8 fveq2d φ Hom C = Hom Base ndx B Hom ndx x B , y B x RngHomo y comp ndx v B × B , z B f 2 nd v RngHomo z , g 1 st v RngHomo 2 nd v f g
10 4 9 eqtrid φ H = Hom Base ndx B Hom ndx x B , y B x RngHomo y comp ndx v B × B , z B f 2 nd v RngHomo z , g 1 st v RngHomo 2 nd v f g
11 2 fvexi B V
12 11 11 mpoex x B , y B x RngHomo y V
13 catstr Base ndx B Hom ndx x B , y B x RngHomo y comp ndx v B × B , z B f 2 nd v RngHomo z , g 1 st v RngHomo 2 nd v f g Struct 1 15
14 homid Hom = Slot Hom ndx
15 snsstp2 Hom ndx x B , y B x RngHomo y Base ndx B Hom ndx x B , y B x RngHomo y comp ndx v B × B , z B f 2 nd v RngHomo z , g 1 st v RngHomo 2 nd v f g
16 13 14 15 strfv x B , y B x RngHomo y V x B , y B x RngHomo y = Hom Base ndx B Hom ndx x B , y B x RngHomo y comp ndx v B × B , z B f 2 nd v RngHomo z , g 1 st v RngHomo 2 nd v f g
17 12 16 mp1i φ x B , y B x RngHomo y = Hom Base ndx B Hom ndx x B , y B x RngHomo y comp ndx v B × B , z B f 2 nd v RngHomo z , g 1 st v RngHomo 2 nd v f g
18 10 17 eqtr4d φ H = x B , y B x RngHomo y