Metamath Proof Explorer


Theorem rngchomfvalALTV

Description: Set of arrows of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020)

Ref Expression
Hypotheses rngcbasALTV.c C=RngCatALTVU
rngcbasALTV.b B=BaseC
rngcbasALTV.u φUV
rngchomfvalALTV.h H=HomC
Assertion rngchomfvalALTV φH=xB,yBxRngHomoy

Proof

Step Hyp Ref Expression
1 rngcbasALTV.c C=RngCatALTVU
2 rngcbasALTV.b B=BaseC
3 rngcbasALTV.u φUV
4 rngchomfvalALTV.h H=HomC
5 1 2 3 rngcbasALTV φB=URng
6 eqidd φxB,yBxRngHomoy=xB,yBxRngHomoy
7 eqidd φvB×B,zBf2ndvRngHomoz,g1stvRngHomo2ndvfg=vB×B,zBf2ndvRngHomoz,g1stvRngHomo2ndvfg
8 1 3 5 6 7 rngcvalALTV φC=BasendxBHomndxxB,yBxRngHomoycompndxvB×B,zBf2ndvRngHomoz,g1stvRngHomo2ndvfg
9 8 fveq2d φHomC=HomBasendxBHomndxxB,yBxRngHomoycompndxvB×B,zBf2ndvRngHomoz,g1stvRngHomo2ndvfg
10 4 9 eqtrid φH=HomBasendxBHomndxxB,yBxRngHomoycompndxvB×B,zBf2ndvRngHomoz,g1stvRngHomo2ndvfg
11 2 fvexi BV
12 11 11 mpoex xB,yBxRngHomoyV
13 catstr BasendxBHomndxxB,yBxRngHomoycompndxvB×B,zBf2ndvRngHomoz,g1stvRngHomo2ndvfgStruct115
14 homid Hom=SlotHomndx
15 snsstp2 HomndxxB,yBxRngHomoyBasendxBHomndxxB,yBxRngHomoycompndxvB×B,zBf2ndvRngHomoz,g1stvRngHomo2ndvfg
16 13 14 15 strfv xB,yBxRngHomoyVxB,yBxRngHomoy=HomBasendxBHomndxxB,yBxRngHomoycompndxvB×B,zBf2ndvRngHomoz,g1stvRngHomo2ndvfg
17 12 16 mp1i φxB,yBxRngHomoy=HomBasendxBHomndxxB,yBxRngHomoycompndxvB×B,zBf2ndvRngHomoz,g1stvRngHomo2ndvfg
18 10 17 eqtr4d φH=xB,yBxRngHomoy