Metamath Proof Explorer


Theorem rngcifuestrc

Description: The "inclusion functor" from the category of non-unital rings into the category of extensible structures. (Contributed by AV, 30-Mar-2020)

Ref Expression
Hypotheses rngcifuestrc.r R = RngCat U
rngcifuestrc.e E = ExtStrCat U
rngcifuestrc.b B = Base R
rngcifuestrc.u φ U V
rngcifuestrc.f φ F = I B
rngcifuestrc.g φ G = x B , y B I x RngHomo y
Assertion rngcifuestrc φ F R Func E G

Proof

Step Hyp Ref Expression
1 rngcifuestrc.r R = RngCat U
2 rngcifuestrc.e E = ExtStrCat U
3 rngcifuestrc.b B = Base R
4 rngcifuestrc.u φ U V
5 rngcifuestrc.f φ F = I B
6 rngcifuestrc.g φ G = x B , y B I x RngHomo y
7 eqid ExtStrCat U = ExtStrCat U
8 1 3 4 rngcbas φ B = U Rng
9 incom U Rng = Rng U
10 8 9 eqtrdi φ B = Rng U
11 eqid Hom R = Hom R
12 1 3 4 11 rngchomfval φ Hom R = RngHomo B × B
13 7 4 10 12 rnghmsubcsetc φ Hom R Subcat ExtStrCat U
14 13 idi φ Hom R Subcat ExtStrCat U
15 eqid ExtStrCat U cat Hom R = ExtStrCat U cat Hom R
16 eqid Base ExtStrCat U cat Hom R = Base ExtStrCat U cat Hom R
17 1 4 8 12 rngcval φ R = ExtStrCat U cat Hom R
18 17 fveq2d φ Base R = Base ExtStrCat U cat Hom R
19 3 18 syl5eq φ B = Base ExtStrCat U cat Hom R
20 19 reseq2d φ I B = I Base ExtStrCat U cat Hom R
21 5 20 eqtrd φ F = I Base ExtStrCat U cat Hom R
22 19 adantr φ x B B = Base ExtStrCat U cat Hom R
23 12 oveqdr φ x B y B x Hom R y = x RngHomo B × B y
24 ovres x B y B x RngHomo B × B y = x RngHomo y
25 24 adantl φ x B y B x RngHomo B × B y = x RngHomo y
26 23 25 eqtr2d φ x B y B x RngHomo y = x Hom R y
27 26 reseq2d φ x B y B I x RngHomo y = I x Hom R y
28 19 22 27 mpoeq123dva φ x B , y B I x RngHomo y = x Base ExtStrCat U cat Hom R , y Base ExtStrCat U cat Hom R I x Hom R y
29 6 28 eqtrd φ G = x Base ExtStrCat U cat Hom R , y Base ExtStrCat U cat Hom R I x Hom R y
30 14 15 16 21 29 inclfusubc φ F ExtStrCat U cat Hom R Func ExtStrCat U G
31 2 a1i φ E = ExtStrCat U
32 17 31 oveq12d φ R Func E = ExtStrCat U cat Hom R Func ExtStrCat U
33 32 breqd φ F R Func E G F ExtStrCat U cat Hom R Func ExtStrCat U G
34 30 33 mpbird φ F R Func E G