Metamath Proof Explorer


Theorem rngcifuestrc

Description: The "inclusion functor" from the category of non-unital rings into the category of extensible structures. (Contributed by AV, 30-Mar-2020)

Ref Expression
Hypotheses rngcifuestrc.r R = RngCat U
rngcifuestrc.e E = ExtStrCat U
rngcifuestrc.b B = Base R
rngcifuestrc.u φ U V
rngcifuestrc.f φ F = I B
rngcifuestrc.g φ G = x B , y B I x RngHom y
Assertion rngcifuestrc φ F R Func E G

Proof

Step Hyp Ref Expression
1 rngcifuestrc.r R = RngCat U
2 rngcifuestrc.e E = ExtStrCat U
3 rngcifuestrc.b B = Base R
4 rngcifuestrc.u φ U V
5 rngcifuestrc.f φ F = I B
6 rngcifuestrc.g φ G = x B , y B I x RngHom y
7 eqid ExtStrCat U = ExtStrCat U
8 1 3 4 rngcbas φ B = U Rng
9 incom U Rng = Rng U
10 8 9 eqtrdi φ B = Rng U
11 eqid Hom R = Hom R
12 1 3 4 11 rngchomfval φ Hom R = RngHom B × B
13 7 4 10 12 rnghmsubcsetc φ Hom R Subcat ExtStrCat U
14 eqid ExtStrCat U cat Hom R = ExtStrCat U cat Hom R
15 eqid Base ExtStrCat U cat Hom R = Base ExtStrCat U cat Hom R
16 1 4 8 12 rngcval φ R = ExtStrCat U cat Hom R
17 16 fveq2d φ Base R = Base ExtStrCat U cat Hom R
18 3 17 eqtrid φ B = Base ExtStrCat U cat Hom R
19 18 reseq2d φ I B = I Base ExtStrCat U cat Hom R
20 5 19 eqtrd φ F = I Base ExtStrCat U cat Hom R
21 18 adantr φ x B B = Base ExtStrCat U cat Hom R
22 12 oveqdr φ x B y B x Hom R y = x RngHom B × B y
23 ovres x B y B x RngHom B × B y = x RngHom y
24 23 adantl φ x B y B x RngHom B × B y = x RngHom y
25 22 24 eqtr2d φ x B y B x RngHom y = x Hom R y
26 25 reseq2d φ x B y B I x RngHom y = I x Hom R y
27 18 21 26 mpoeq123dva φ x B , y B I x RngHom y = x Base ExtStrCat U cat Hom R , y Base ExtStrCat U cat Hom R I x Hom R y
28 6 27 eqtrd φ G = x Base ExtStrCat U cat Hom R , y Base ExtStrCat U cat Hom R I x Hom R y
29 13 14 15 20 28 inclfusubc φ F ExtStrCat U cat Hom R Func ExtStrCat U G
30 2 a1i φ E = ExtStrCat U
31 16 30 oveq12d φ R Func E = ExtStrCat U cat Hom R Func ExtStrCat U
32 31 breqd φ F R Func E G F ExtStrCat U cat Hom R Func ExtStrCat U G
33 29 32 mpbird φ F R Func E G