Metamath Proof Explorer


Theorem rngcisoALTV

Description: An isomorphism in the category of non-unital rings is a bijection. (Contributed by AV, 28-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses rngcsectALTV.c C=RngCatALTVU
rngcsectALTV.b B=BaseC
rngcsectALTV.u φUV
rngcsectALTV.x φXB
rngcsectALTV.y φYB
rngcisoALTV.n I=IsoC
Assertion rngcisoALTV φFXIYFXRngIsomY

Proof

Step Hyp Ref Expression
1 rngcsectALTV.c C=RngCatALTVU
2 rngcsectALTV.b B=BaseC
3 rngcsectALTV.u φUV
4 rngcsectALTV.x φXB
5 rngcsectALTV.y φYB
6 rngcisoALTV.n I=IsoC
7 eqid InvC=InvC
8 1 rngccatALTV UVCCat
9 3 8 syl φCCat
10 2 7 9 4 5 6 isoval φXIY=domXInvCY
11 10 eleq2d φFXIYFdomXInvCY
12 2 7 9 4 5 invfun φFunXInvCY
13 funfvbrb FunXInvCYFdomXInvCYFXInvCYXInvCYF
14 12 13 syl φFdomXInvCYFXInvCYXInvCYF
15 1 2 3 4 5 7 rngcinvALTV φFXInvCYXInvCYFFXRngIsomYXInvCYF=F-1
16 simpl FXRngIsomYXInvCYF=F-1FXRngIsomY
17 15 16 syl6bi φFXInvCYXInvCYFFXRngIsomY
18 14 17 sylbid φFdomXInvCYFXRngIsomY
19 eqid F-1=F-1
20 1 2 3 4 5 7 rngcinvALTV φFXInvCYF-1FXRngIsomYF-1=F-1
21 funrel FunXInvCYRelXInvCY
22 12 21 syl φRelXInvCY
23 releldm RelXInvCYFXInvCYF-1FdomXInvCY
24 23 ex RelXInvCYFXInvCYF-1FdomXInvCY
25 22 24 syl φFXInvCYF-1FdomXInvCY
26 20 25 sylbird φFXRngIsomYF-1=F-1FdomXInvCY
27 19 26 mpan2i φFXRngIsomYFdomXInvCY
28 18 27 impbid φFdomXInvCYFXRngIsomY
29 11 28 bitrd φFXIYFXRngIsomY