Description: An isomorphism in the category of non-unital rings is a bijection. (Contributed by AV, 28-Feb-2020) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngcsectALTV.c | |
|
rngcsectALTV.b | |
||
rngcsectALTV.u | |
||
rngcsectALTV.x | |
||
rngcsectALTV.y | |
||
rngcisoALTV.n | |
||
Assertion | rngcisoALTV | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcsectALTV.c | |
|
2 | rngcsectALTV.b | |
|
3 | rngcsectALTV.u | |
|
4 | rngcsectALTV.x | |
|
5 | rngcsectALTV.y | |
|
6 | rngcisoALTV.n | |
|
7 | eqid | |
|
8 | 1 | rngccatALTV | |
9 | 3 8 | syl | |
10 | 2 7 9 4 5 6 | isoval | |
11 | 10 | eleq2d | |
12 | 2 7 9 4 5 | invfun | |
13 | funfvbrb | |
|
14 | 12 13 | syl | |
15 | 1 2 3 4 5 7 | rngcinvALTV | |
16 | simpl | |
|
17 | 15 16 | syl6bi | |
18 | 14 17 | sylbid | |
19 | eqid | |
|
20 | 1 2 3 4 5 7 | rngcinvALTV | |
21 | funrel | |
|
22 | 12 21 | syl | |
23 | releldm | |
|
24 | 23 | ex | |
25 | 22 24 | syl | |
26 | 20 25 | sylbird | |
27 | 19 26 | mpan2i | |
28 | 18 27 | impbid | |
29 | 11 28 | bitrd | |