Metamath Proof Explorer


Theorem rngimcnv

Description: The converse of an isomorphism of non-unital rings is an isomorphism of non-unital rings. (Contributed by AV, 27-Feb-2025)

Ref Expression
Assertion rngimcnv FSRngIsomTF-1TRngIsomS

Proof

Step Hyp Ref Expression
1 rngimrcl FSRngIsomTSVTV
2 isrngisom SVTVFSRngIsomTFSRngHomoTF-1TRngHomoS
3 eqid BaseS=BaseS
4 eqid BaseT=BaseT
5 3 4 rnghmf FSRngHomoTF:BaseSBaseT
6 frel F:BaseSBaseTRelF
7 dfrel2 RelFF-1-1=F
8 6 7 sylib F:BaseSBaseTF-1-1=F
9 5 8 syl FSRngHomoTF-1-1=F
10 id FSRngHomoTFSRngHomoT
11 9 10 eqeltrd FSRngHomoTF-1-1SRngHomoT
12 11 anim1ci FSRngHomoTF-1TRngHomoSF-1TRngHomoSF-1-1SRngHomoT
13 isrngisom TVSVF-1TRngIsomSF-1TRngHomoSF-1-1SRngHomoT
14 13 ancoms SVTVF-1TRngIsomSF-1TRngHomoSF-1-1SRngHomoT
15 12 14 imbitrrid SVTVFSRngHomoTF-1TRngHomoSF-1TRngIsomS
16 2 15 sylbid SVTVFSRngIsomTF-1TRngIsomS
17 1 16 mpcom FSRngIsomTF-1TRngIsomS