Metamath Proof Explorer


Theorem rngisomfv1

Description: If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then the function value of the ring unity of the unital ring is an element of the base set of the non-unital ring. (Contributed by AV, 27-Feb-2025)

Ref Expression
Hypotheses rngisom1.1 1˙=1R
rngisom1.b B=BaseS
Assertion rngisomfv1 RRingFRRngIsomSF1˙B

Proof

Step Hyp Ref Expression
1 rngisom1.1 1˙=1R
2 rngisom1.b B=BaseS
3 eqid BaseR=BaseR
4 3 2 rngimf1o FRRngIsomSF:BaseR1-1 ontoB
5 f1of F:BaseR1-1 ontoBF:BaseRB
6 4 5 syl FRRngIsomSF:BaseRB
7 6 adantl RRingFRRngIsomSF:BaseRB
8 3 1 ringidcl RRing1˙BaseR
9 8 adantr RRingFRRngIsomS1˙BaseR
10 7 9 ffvelcdmd RRingFRRngIsomSF1˙B