Metamath Proof Explorer


Theorem rngisomring

Description: If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then both rings are unital. (Contributed by AV, 27-Feb-2025)

Ref Expression
Assertion rngisomring RRingSRngFRRngIsomSSRing

Proof

Step Hyp Ref Expression
1 simp2 RRingSRngFRRngIsomSSRng
2 eqid 1R=1R
3 eqid BaseS=BaseS
4 2 3 rngisomfv1 RRingFRRngIsomSF1RBaseS
5 4 3adant2 RRingSRngFRRngIsomSF1RBaseS
6 oveq1 i=F1RiSx=F1RSx
7 6 eqeq1d i=F1RiSx=xF1RSx=x
8 oveq2 i=F1RxSi=xSF1R
9 8 eqeq1d i=F1RxSi=xxSF1R=x
10 7 9 anbi12d i=F1RiSx=xxSi=xF1RSx=xxSF1R=x
11 10 ralbidv i=F1RxBaseSiSx=xxSi=xxBaseSF1RSx=xxSF1R=x
12 11 adantl RRingSRngFRRngIsomSi=F1RxBaseSiSx=xxSi=xxBaseSF1RSx=xxSF1R=x
13 eqid S=S
14 2 3 13 rngisom1 RRingSRngFRRngIsomSxBaseSF1RSx=xxSF1R=x
15 5 12 14 rspcedvd RRingSRngFRRngIsomSiBaseSxBaseSiSx=xxSi=x
16 3 13 isringrng SRingSRngiBaseSxBaseSiSx=xxSi=x
17 1 15 16 sylanbrc RRingSRngFRRngIsomSSRing